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Introduction: Alteration minerals are important — W/R=100000 W/R =10000
indicators of thermochemical environments at the time $ 100
of their formation — and thus indicators for the poten- = 80 -
tial habitability of a site [1,2]. Therefore, the detection -%
of alteration minerals, especially nontronite [3], on =, 60 -
Mars was an important step to understand Mars’ hy- ()
drous history. This initial finding was followed by the g 40
detection of a wide variety of alteration minerals, in- _cg 20 -
cluding but not limited to diverse phyllosilicates, car- é
bonates, sulfates and hydrous silica in a variety of geo- © 0 - -
logic settings in — mostly — Noachian terrains [e.g.,3- g £ Q2 2 8 99
8], see [9] for review. % ‘g > % g = =
The importance of thermochemical modeling lies in S o S o 8
the fact that the observation of minerals on the ground ° < ° <
delivers an end result, but information of alteration 'o\? 60 -
conditions, such as T, P, and composition of the fluid, = 50 A W/R = 1000
are lost. For Mars, diverse geologic settings with their 2
respective temperature and host rock requirements g 40 1
have been modeled, ranging from very low-T surface ';' 30 -
evaporation scenarios [10,11] and acid weathering 2 20 -
[12,13] to hydrothermal silica deposition [14]. We .fg
have focused on impact-generated hydrothermal sys- S 10 - I
tems [14,15,16], i.e., systems at warm to hot water % 0 : : |,|] !
conditions. Those subsurface systems contain water, 2 2 2 8 2 o N
CO,, and host rock components, but no species are T 6 ®8 S5 € > S
added from magma degassing or acid weathering. We & 5 GE) £ 2 s o
used CHILLER [17] and limited the upper temperature < 2 &
range to ~250 °C. CHILLER is now replaced by —_ @
CHIM-XPT [18], which allows for a much higher tem- $ 50 WIR =1
perature range up to 600 °C. CHIM-XPT has been % 40 - -
applied to terrestrial basaltic settings at temperatures up to D
500°C [19]. High tempertures are important in the cen- =, 30 1
tral peak settings of large impact-craters, where initial @ 20 1
temperatures readily exceed 250 °C [20] and form 5
high-temperature alteration phases — as is documented ° 10 -
for terrestrial craters [e.g., 21]. With new exploration 3
techniques on Mars, such as the CheMin instrument on © O0-
the Mars Science Laboratory (MSL) rover [22], those 2 22222 % 2
rare but important phases might be found in the near a ‘g < 2 g 2 =1 2
future. Their detection will allow for a more complete = 2 % Q g o
understanding of the Martian alteration history. Here b = %
we compare our previous CHILLER results obtained
on the Martian meteorite composition LEW 88516 [15] = g::"M"ER
to CHIM-XPT and carry out models at 500 °C. [ CHIM, no quartz
CHILLER-CHIM-XPT results and discussion. - -
We modeled LEW88516 earlier [15], and details on Fig. 1. Comparison of CHILLER and CHIM-XPT
input data can be found there. Host rock and starting model runs of Martian lherzolithe LEW 88516 at 150°C, 110

fluid chemistry are identical for all runs. bar. See text for details.
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Fig. 2. CHIM-XPT model run at 500 °C and 990 bar.
H,O gas is excluded, which causes no gas phase to form.
Host rock is Martian lherzolithe LEW 88516.

Model 150°C run with CHILLER. Figure 1 shows
that at high W/R the only mineral precipitates are hem-
atite, diaspore, kaolinite and pyrite. All species not
included in those precipitates stay in solution. At in-
termediate W/R a greater diversity of minerals precipi-
tate, including Fe-smectite and chlorite. At low W/R
the precipitate is dominated by serpentine, chlorite and
amphibole. For details see [15]

Remodel 150°C run with CHIM. CHIM-XPT with
its updated soltherm database results in the same pre-
cipitates with one exception: in the intermediate W/R
range, quartz saturates in the CHIM-XPT run but is
absent in the CHILLER run. As a consequence, serpen-
tine forms instead of nontronite. Since, to date, no
quartz or silica phase has been observed in assemblage
with serpentine on Mars or in Martian meteorites
[3,4,9,23], suppression of quartz seems justified — and
results in nearly identical CHIM and CHILLER out-
puts.

Model 500°C with CHIM. At 500 °C few minerals
precipitate at high and intermediate W/R and the as-
semblages are dominated by serpentine and hematite
(Fig. 2). At low WI/R serpentine (antigorite) still dom-
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inates the assemblage, but is accompanied by higher
temperature silicates. These are amphibole Fe-
anthophyllite), epidote, pyroxene, and feldspar. Mag-
netite is present at >10 wt.-%. This is in accordance
with terrestrial observations, e.g., at Chixculub crater,
where the high-T alteration phase contains many of the
same minerals [21].

Conclusions — and outlook for rover explora-
tion: High-T phases are rare and mostly over-printed
by later, longer lasting hydrothermal stages at lower
temperature, so they are hard to find even with terres-
trial methods. Therefore, orbiter instrumentation based
detection of such phases might be impossible. With
the next generation of rovers operating on the Martian
surface, namley CheMin on MSL [22] — and future,
similar instruments — it will become possible to detect
these phases, even if present at a few percent only.
This will provide important information on the early
history of a system — including the chemistry of fluids
potentially venting, cooling and evaporating at the sur-
face above high-T subsurface alteration sites.
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