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Introduction:  The Martian areoid (geoid) is domi-

nated by two large highs, one over Tharsis and the 
other approximately 180 degrees away [1]. The most 
prominent long-wavelength topographic structures are 
due to the Tharsis Rise and the crustal dichotomy [2], 
where the Tharsis rise may be associated with a deeper 
mantle component [3]. The anti-Tharsis geoid high 
may be due to elastic deformation of the crust, which 
in turn may be due to the load created by Tharsis [4].  
While Martian surface topography is dominated by the 
hemispherical dichotomy and Tharsis rise [5] by 
construction, gravity models have no degree-1 compo-
nent. Gravity and topography have been used by 
Neumann et al. [6] to determine crustal thickness.  
However, due to the non-uniqueness of gravity, there 
is a tradeoff between Moho topography and internal 
structure of the mantle. According to Kiefer et al. [7], a 
significant fraction of the topography and geoid, up to 
spherical harmonic degree 10, is supported by mantle 
convection. Kiefer et al. [7] specifically note that de-
grees 2 through 4 of the geoid and topography are in-
consistent with an isostatic model and require deep 
mantle structure. 

Modeling: In this work, mantle convection simula-
tions are performed using finite element code CitcomS 
[8][9] and [10]. The calculations are performed in a 3D 
spherical shell with a cold free-slip upper boundary 
and a free-slip core mantle boundary. We use time-
dependent, rather than steady state, stagnant lid con-
vection calculations with a temperature-dependent 
Newtonian rheology and a layered viscosity structure 
that includes a viscosity increase by a factor of 8 and 
25 at a depth of 996 km [11]. This depth corresponds 
to the pressure of the phase transition between olivine 
and spinel and the pressure at which a viscosity in-
crease on Earth is needed to explain the long wave-
length geoid [12]. Due to Mars’ lower gravity, this 
transition occurs in the mid-mantle in comparison to 
the upper mantle on Earth. Hence a viscosity jump 
might be expected at this depth [11]. 

We use the geoid and dynamic topographic data 
from models with different layered viscosity structure, 
Rayleigh numbers and internal heating values to test 
whether degree-1 structure is consistent with the ob-
served gravity and topography from the MGS and 
Mars Odyssey missions. 

Results: We have compiled numerous temperature-
dependent viscosity calculations using different radial 

viscosity structures including both uniform viscosity 
with depth and layered viscosity cases. The layered 
viscosity models include a viscosity jump at 996 km, 
where the mantle viscosity is 8 to 25 times higher than 
the viscosity of the upper mantle; these calculations 
produce strong degree-1 structures in the thermal field 
consistent with previous results [11]. The calculations 
without a step increase in viscosity with depth have 10 
or more plumes and there is a strong positive correla-
tion between geoid and topography at wavelengths 
corresponding to the structure of the individual 
plumes. The models with a step increase in viscosity 
with depth have strong degree-1 geoid and topography 
components that are anti-correlated. The switch be-
tween positively and negatively correlated geoid and 
topography with the radial viscosity step is consistent 
with the results of Hager and Richards [12] for Earth.  

Discussion: In the calculations with a uniform vis-
cosity with depth there is a strong positive correlation 
between the geoid and topography and significant 
power in the short-wavelength harmonics (i.e., higher 
than degree 5).  On the other hand, in the calculations 
with a layered viscosity structure there is a strong anti-
correlation between the geoid and topographic struc-
ture and the power is in the low harmonics (particu-
larly degree 1). The fact that the radial viscosity struc-
ture impacts the correlation between geoid and topog-
raphy is not a surprising result [12], however this has 
yet to be exploited in understanding the dynamics of 
the Martian mantle. Kiefer et al. [7] showed that de-
grees 3 and 4 of the Martian geoid and topography are 
not well correlated and go on to show that these are 
consistent with the deep mantle structure. The poor 
correlation between degrees 3 and 4 remains the case 
in the most recent gravity and planetary shape models 
for Mars. In our convection calculations, with the ex-
ception of degree 1, which is anomalous, the geoid 
power spectra decreases linearly with degree. Thus we 
have yet to find calculations with anomalous power in 
the degree 2-4 geoid that would be consistent with the 
observations. 

Conclusion: Comparing the gravity and topogra-
phy from convection calculations to the observed grav-
ity and topography fields from the MGS and Mars Od-
yssey missions provides us the opportunity to test Mar-
tian mantle models such as the degree-1 mantle struc-
ture.   
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Roberts and Zhong [11] also show phase transfor-
mation between ringwoodite and pervoskite just above 
the core can also produce degree 1 structure without 
requiring a step increase in viscosity with depth.  We 
have yet to explore this case. 
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