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Introduction: The MErcury Surface, Space ENvi-

ronment, GEochemistry, and Ranging (MESSENGER) 
spacecraft’s [1] Mercury Atmospheric and Surface 
Composition Spectrometer (MASCS) [2] and X-Ray 
Spectrometer (XRS) instruments have been mapping the 
planet’s surface and exosphere from orbit since 29 
March 2011. MASCS has obtained more than 3 million 
surface reflectance spectra at near-ultraviolet to near-
infrared wavelengths to date. The MASCS Visible and 
Infrared Spectrograph (VIRS) operates over the wave-
length range 300–1450 nm. VIRS reflectance spectra 
show no clear evidence of an absorption band centered 
at a wavelength near ~1 µm (1000 nm) that would be 
diagnostic of the presence of ferrous iron in silicates. 
However, ultraviolet (UV) absorptions do show some 
spectral slope variation at wavelengths shorter than 
~400 nm. The UV variations are consistent with the low 
total Fe abundances (averaging ~1–2 wt%) on Mercu-
ry’s surface indicated by fluorescent X-ray spectra 
obtained by XRS [3-5] as well as MESSENGER’s 
Gamma-Ray Spectrometer (GRS) [6] and even lower 
abundances for ferrous iron in silicates [7]. XRS results 
show that Mercury’s crust is Mg-rich but Al- and Ca-
poor relative to typical terrestrial and lunar rocks and 
has a high abundance of S [3-5]. The absolute abun-
dances are subject to systematic uncertainties, amount-
ing to perhaps a factor of 2 for Fe, but relative differ-
ences across the planet’s surface are more robust [5]. 

VIRS Mapping: Systematic VIRS mapping of 
Mercury has sampled over 90% of the planet on a spa-
tial scale of 20 km. Figure 1 is a red-green-blue (RGB) 
composite of VIRS reflectance values (with an emprical 
photometric correction) and ratios overlaid on a Mercu-
ry Dual Imaging System (MDIS) [8] base map. The red 
channel is MASCS VIRS reflectance at 575 nm (R575), 
which is a proxy for visible albedo; the green channel is 
the 415 nm/750 nm reflectance ratio (VISr), which is a 
proxy for the visible-near infrared spectral slope; and 
the blue channel is the 310 nm/390 nm reflectance ratio 
(UVr), which indicates the relative strength of UV 
absorption features. This composite highlights locations 
on Mercury’s surface that are distinct from the planetary 
average spectral signature [9, 10]. These regions can be 
categorized to give a set of spectral units that correlate 
with MDIS color units and geomorphology [9, 10]. 
Mercury’s “average” spectral unit consists mostly of 
plains units, with R575, VISr, and UVr values close to 
the means for Mercury. The volcanic northern plains 
and Caloris interior plains (labeled a and b, respectively, 
in Fig. 1) tend to have high R575 and low UVr values 

(purple-red-yellow color in Fig. 1), whereas areas such 
as the circum-Caloris plains (labeled c in Fig. 1), Rem-
brandt basin (labeled 10 in Fig. 1), and the area around 
Nabokov crater (labeled 1 and 2 in Fig. 1) have high 
UVr values (cyan-purple color in Fig. 1). 

 

Figure 1. Composite MASCS VIRS global coverage map 
overlaid on MDIS monochrome mosaic. Individual MASCS 
footprints are represented in colors indicating spectral proper-
ties (refer to text for color assignments). Numbers and letters 
mark regions of interest noted in the text. 

 
XRS Mapping: The most complete compositional 

information derived from XRS data is limited to regions 
of the planet that were observed during periods of solar 
flares [3–5]. Because of MESSENGER’s eccentric 
orbit, the spatial resolution of XRS footprints increases 
toward high northern latitudes. Areas mapped so far by 
XRS during solar flare periods [3-5] are shown in Fig-
ure 2. The large footprints that span the southern hemi-
sphere relate to the strongest solar flares, from which 
abundance data for Mg, Al, S, Ca, and Fe can be de-
rived [3-5]. The smaller footprints in the northern hemi-
sphere are from weaker flares when only Mg, Al, S, and 
Ca abundances can be estimated [3, 4]. In the XRS 
RGB composite (Fig. 2), the red channel is S/Si, the 
green channel is Ca/Si, and the blue channel is Fe/Si. 
This color scheme highlights areas with the highest Fe 
(blue), S (yellow-orange), and Ca (green). The high-Fe 
region (labeled 1, 2 in Fig. 1) has an Fe/Si ratio of 0.07, 
equivalent to ~1.5 wt % Fe. The dark green area (la-
beled 3 in Fig. 1) has the lowest Fe/Si ratio of 0.01 
(~0.2 wt % Fe). 

MASCS–XRS Comparison: Because of the incom-
plete global coverage of XRS observations, direct com-
parison between MASCS and XRS data must be con-
fined to areas that have been observed by both instru-
ments. We focus here on the areas observed by XRS for 
which there is Fe abundance information from at least 
two overlapping XRS footprints (i.e., the southern hem-
isphere) [5]. The regions we compare were chosen to 
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provide a representative sampling of the range in XRS-
derived compositions. The regions are numbered in all 
figures as follows: (1) Nabokov crater; (2) Nabokov and 
surrounding region; (3) plains with low Fe/Si; (4) plains 
with low Fe/Si, high S/Si, and high Ca/Si; (5) plains 
with low Fe/Si and high S/Si; (6) plains with high S/Si; 
(7) plains with high Ca/Si; (8) and (9) regions with 
average XRS elemental ratio values; (10) Rembrandt 
basin; and (11) Ellington crater region. 
 

Figure 2. RGB color composite for XRS-derived surface 
composition [4, 5]. Red: S abundance; green: Ca abundance; 
blue: Fe abundance. Number labeling is as in Figure 1. 

 
Discussion: For each of the 11 regions we compared 

the MASCS R575, VISr, and UVr parameters to the 
XRS-derived S/Si, Ca/Si, and Fe/Si values. The best 
correlation is between UVr and Fe/Si (Fig. 3). The UVr 
parameter is likely being influenced by Fe oxygen–
metal charge transfer absorptions that occur in the near-
UV [9, 10], and it is therefore at least partially repre-
sentative of Fe content. If the correlation is verified by 
additional data, then it may be possible to extrapolate 
that regions with higher UVr values (>0.7), e.g., areas 
that contain hollows [11, 12] or low-reflectance plains 
[13], have higher than average Fe contents (>4 wt % 
Fe). 

The only other parameter comparison that may indi-
cate a relationship is between the MASCS UVr and 
XRS S/Si (Fig. 4). Although low-sulfur regions have no 
apparent relation to UVr, the region with the highest 
S/Si ratio (labeled as 5 in all figures) has a low UVr 
value. This region is adjacent to that with the lowest Fe 
and itself has a below-average UVr value. This outcome 
is in contrast to an XRS S/Si–Fe/Si correlation observed 
elsewhere on the planet [5] and suggests that the highest 
S contents may be found in the low-Fe regions. 

We note that the center of Nabokov crater has a 
much higher UVr value than the extended Nabokov 
region, which is within the high Fe/Si area. It is possible 
that the poor XRS spatial resolution in the southern 
hemisphere smears out a higher concentration of Fe in 
Nabokov crater to give the appearance of a more spa-
tially extended high-Fe region. 

 
Figure 3. MASCS UVr versus XRS Fe/Si for the series of 
locations marked in Figs. 1 and 2. Approximate errors are 
shown. 

 
Figure 4. MASCS UVr versus XRS S/Si. There is a possible 
minor anticorrelation at higher S values. 
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