Remanent Magnetic Properties of three Coarse-Crystalline Apollo 12 Igneous rocks.

R. B. Hargraves and N. Dorety
Department of Geological and Geophysical Sciences
Princeton University, Princeton, N.J. 08540

Alternating field demagnetisation of natural remanence in small fragments (~3 gm) of Apollo 12 samples 12053, 12063, 12065 appears to indicate the presence of a very weak, but relatively stable remanent magnetization with coercivity in excess of 100 oe. After erasure of an unstable viscous component, the remanent intensities average around 3×10^{-7} emu/gm.

IRM induced in 8000 gauss varies between 2 and 3×10^{-4} emu/gm; it is highly stable, being still in excess of 10% of the original after 1000 oe A.F. demagnetization.

These I.R.M. characteristics are identical with those recorded for three comparable Apollo 11 samples. The stable natural remanence in the Apollo 11 rocks, however, is approximately 10 times stronger than that in these Apollo 12 samples, suggesting a difference either in the mechanism of magnetisation, or, if it be TRM, in the intensity of the magnetizing field.