Argon and Tritium Radioactivities in Lunar Rocks and in the Sample Return Container

Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973

37Ar and 39Ar radioactivities were measured in lunar rocks nos. 12063 and 12065. The magnitude of the observed activities will be compared to the production of these isotopes in a thick target of lunar-like material by 600 MeV protons. Higher levels of 37Ar were observed in Apollo 12 rocks than were observed in Apollo 11 rocks. The higher 37Ar observed is attributed to the solar flare of Nov. 2, 1969. Tritium analyses of these rocks revealed the presence of tritons adsorbed on the surface of the samples studied. The origin of the adsorbed tritium is not clearly understood, though it is conceivably a residue from the Nov. 2d flare.

37Ar was observed in the Apollo Lunar Sample Return Container (ALSRC) containing the selected rock samples. The gas contained 0.046 ± 0.002 dpm 37Ar and -0.0016 ± 0.0018 dpm 39Ar. The 37Ar/39Ar ratio of over 25 is much higher than was observed in the rock samples, indicating the 37Ar observed was present in the lunar atmosphere. These observations will be compared to a 600 MeV proton irradiation of simulated lunar fines. Based on these measurements an estimate is made of the amount of 37Ar released to the lunar atmosphere by recoil and diffusion processes.

A search was made for 210Pb activity on the Mylar foil covering of the command module. An upper limit of 2×10^{-6} dis/cm2 sec$^{-1}$ of 210Pb was set, corresponding to a flux of less than 0.05 Rn222 atoms/cm2 sec from the lunar atmosphere.