Investigation of Lunar Erosion by Volatilized Alkalis

James V. Derby and Virginia Lewis
Chemistry Department and Hawaii Institute of Geophysics
University of Hawaii, Honolulu, Hawaii, 96822

David Hale and Harvey Legrone
Quality Evaluation Laboratory
Lualualei Naval Ammunition Depot
Oahu, Hawaii, 96792

and

John J. Naughton
Chemistry Department and Hawaii Institute of Geophysics
University of Hawaii, Honolulu, Hawaii, 96822

Abstract—Comminution of lunar rocks may be caused partly by the action of volatilized alkali metals. From step-wise heating in a Knutsen cell - mass spectrometer, and in a cold finger collector furnace, lunar samples are found to evaporate Al, Ca, Fe, Mg and Si, as well as the alkali metals. Of the latter, K exhibits a high vapor pressure relative to Na, out of proportion to their relative contents in the rock samples.

Evidence suggestive of erosion by K in particular is: (1) from electron microprobe studies, regions of significantly high K content are found on or near the original rock surfaces. Some show an anticorrelation with Si, so at least these do not seem to be related to mesostasis. (2) A high content of K was found in the basaltic component of the lunar fines examined, when compared to the accompanying rocks from which presumably they were derived. (3) On heating, a high Na-K ratio is found in vapors from terrestrial rocks eroded by K, as compared to
non-treated rocks--an effect that seems to be diagnostic for the former. A similar anomalous release ratio has been noted for lunar surface rocks and fines samples, relative to that found for rock interiors--suggesting the presence of surficial K on the original rock surfaces and fines.