Abstract for January 1971 Houston meeting

Noble gases of solar wind origin in Surveyor 3 material

F. Bühler, P. Eberhardt, J. Geiss and J. Schwarzmüller

Physikalisches Institut
University of Berne
3000 Berne, Switzerland

The Apollo 12 astronauts salvaged an unpainted Al-tube from the Surveyor 3 spacecraft. He and Ne were measured in a small ring cut from this tube. The lower side of the tube is contaminated by lunar dust, which cannot be completely removed by ultrasonic cleaning. The upper half is essentially dust free and contains trapped solar wind He and Ne with $\text{He}_4/\text{Ne}^{20} = 295$ in the trapped gas. The He_4 distribution around the Al-tube is in agreement with the theoretically expected distribution and corresponds to an average solar wind He_4 flux of 7×10^6 cm$^{-2}$ sec$^{-1}$. The value lies within the range of He_4 fluxes observed by other experiments. However, we cannot exclude diffusion loss and the true average flux may be higher. The observed $\text{He}_4/\text{Ne}^{20}$ ratio of 295 corresponds, after correction for differences in trapping efficiencies between He_4 and Ne^{20}, to a solar wind $\text{He}_4/\text{Ne}^{20}$ ratio of 335. This value is lower than the ratios measured by the Apollo 11 and 12 SWC experiments (430 and 620 respectively). The low $\text{He}_4/\text{Ne}^{20}$ ratio obtained from the Surveyor 3 material could be due to He_4 diffusion losses or a
residual small contamination with lunar dust. Neglecting the possible
small influence of these two effects we obtain the following average
isotopic compositions for the solar wind during the exposure of the
Surveyor 3 material: $\text{He}^4/\text{He}^3 = 2700 \pm 100$; $\text{Ne}^{20}/\text{Ne}^{22} = 13.3 \pm 0.4$;
and $\text{Ne}^{22}/\text{Ne}^{21} = 31 \pm 5$. Compared with the Apollo 11 and 12 SWC results
the He^4/He^3 ratio is unexpectedly high. Possible mechanisms which may
have changed this ratio will be discussed.