THE AVERAGE 130Ba(n,γ) CROSS SECTION AND THE ORIGIN OF 131Xe ON THE MOON, W.A. Kaiser, Univ. of California at Berkeley, Physics Dept., Berkeley, Calif., 94720, and B. L. Berman, Univ. of California, Lawrence Livermore Laboratory, Livermore, Calif., 94550.

The average 130Ba(n,γ) cross section has been measured for a neutron spectrum similar to the one at the lunar surface. The pulsed-neutron facility at the Livermore 100-MeV Electron Linear Accelerator served as the source of radiation. The spectrum and flux of neutrons were measured simultaneously with the sample irradiation by the neutron time-of-flight technique. Chemically pure natural BaCl$_2$ samples were irradiated with a total integrated neutron flux of 1.6×10^{13} neutron/cm2. The 131Xe resulting from neutron capture on 130Ba was measured mass spectrometrically. The results show that the integrated product of the neutron flux and the neutron-capture cross section is equal to 1.8×10^{-10}, whence the average cross section $\bar{\sigma} = 12$ b. If, however, the energy range is restricted to the most likely region for large capture resonances (1 - 1000 eV), the resulting $\bar{\sigma} = 220$ b. This large value enables us to conclude that the anomalously high concentration of 131Xe in lunar rocks probably has been produced via this reaction.

Work performed in part under the auspices of the U.S. Atomic Energy Commission.