FERRIC IRON IN PLAGIOCLASE CRYSTALS FROM ANORTHOSITE 15415,
S.S. Hafner, H.H. Niebuhr and S. Zeira, Department of Geosciences,
University of Marburg, D-3550 Marburg, Germany.

Three plagioclase crystals with dimensions of 0.5-1.0 mm were selected
from anorthosite 15415 and studied with electron spin resonance tech-
niques. Anorthosite 15415 consists of 97-99 percent plagioclase (average
composition An97 Ab3 Or0.3), 1-3 percent pyroxene, and traces of ilmenite,
silica, and spinel. The concentration of Fe in the plagioclase is 0.08-0.10 wt
percent. (1,2)

The X-band (9.5 GHz) spectra observed at room temperature can be
grouped into two distinct sets of lines. The first set contains a large
number of lines in the vicinity of g=2. For certain orientations of the
crystals with respect to the external magnetic field, the hyperfine structure
characteristic for Mn²⁺ ions is resolved within this part of the spectrum.
The second set consists of a small number of isolated lines situated at
magnetic fields between 600 and 2000 Gauss. We have limited our quantitative
studies to this second set of lines.

The line positions as well as the intensities depend strongly on the
orientation of the crystals. Two mutually perpendicular orientations have
been found where the resonance fields of two intense lines have minimum
values. These positions are marked with arrows in Fig. 1. They agree with

![Fig. 1. ESR absorption spectra (first derivative) of a plagioclase crystal
from anorthosite 15415. The arrows indicate the centers of identified Fe³⁺
resonances.](image)

© Lunar and Planetary Institute • Provided by the NASA Astrophysics Data System
those given for Fe$^{3+}$ ions in terrestrial anorthite by Gaite and Michoulier (3) (site 2 and 3, magnetic field parallel to the magnetic z and y axes, respectively). This is true if the simplified Hamiltonian

$$\mathcal{H} = \sum_1^3 g \beta H_i S_i + B_{z}^{0} O_{2}^{2} + B_{y}^{2} O_{2}^{2}$$

assumed by these authors and their notation for numbering the sites is used. In addition to those lines shown in Fig. 1, a weak line has been found for H/χ which also agrees with the results of Gaite and Michoulier. In Table 1, our experimental field values are shown together with those calculated from the parameters reported by these authors.

<table>
<thead>
<tr>
<th>Orientation</th>
<th>Site</th>
<th>Experimental Field Value (kilogauss)</th>
<th>Theoretical Field Value (kilogauss)</th>
<th>Difference (kilogauss)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H // z</td>
<td>2</td>
<td>0.689</td>
<td>0.682</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.275</td>
<td>1.274</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.689</td>
<td>0.685</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.341</td>
<td>1.351</td>
<td>0.010</td>
</tr>
<tr>
<td>H // y</td>
<td>2</td>
<td>0.778</td>
<td>0.778</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.745</td>
<td>0.744</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Table 1. Experimental and calculated magnetic fields for a microwave frequency of 9.485 GHz.

By comparing the line intensities with those of a ruby of known chromium concentration the number of Fe$^{3+}$ spins has been estimated. It can be concluded that more than one percent of the total amount of iron in the plagioclase is ferric iron which is substituted for Al$^{3+}$ in at least two nonequivalent sites. This result is in agreement with a determination in powdered plagioclases (4).

Only two of the more intense lines are observed which cannot be explained. These lines are those in Fig. 1 not marked with an arrow. They behave similarly as the analysed lines. It is possible that they are due to Fe$^{3+}$ ions in different sites or to twinning in the crystals. A quantitative analysis is complicated by the fact that near their extremum these lines overlap with the lines of sites 2 and 3.
REFERENCES