SULFUR, METHANE AND METALLIC IRON IN SOME APOLLO 17 FINES J.F.Kerridge, C.Petrowski & I.R.Kaplan, Inst. Geophysics, UCLA, Los Angeles, California 90024.

We report results from the acid hydrolysis of some soil samples from the Taurus-Littrow region, as part of our continuing study of the light element geochemistry of the lunar surface. As described elsewhere (1,2), hydrolysis in 6N H₂SO₄ produces the gases H₂S, CH₄, CO₂, H₂, He and N₂ which can be separated and collected. H₂S and CH₄ are oxidised to SO₂ and CO₂, respectively, before collection, the other gases being collected directly. The SO₂ and CO₂ samples are analysed mass spectrometrically to yield values for δ_3 ⁴S and δ_3 C, respectively. The methane generated during hydrolysis is mainly produced by decomposition of carbide, although some CH₄ is apparently synthesised in situ by solar wind C and H (3). Similarly, most of the H₂ released during hydrolysis is produced in the reaction between FeO and H⁺, with a small addition of directly implanted solar wind H₂.

Table 1.								
Sample	S	8^{34} s	Fe ^O	CH4 813	c co ₂	δ ¹³ c	He	N_2
	ppm	0/00	wt %	ppm C 0/o	o ppm C	0/00	ppm	ppm
70011,27 71501,22 72701,15 76501,20 78421,28	968 1075 617 598 804	+7.4 +6.4 +8.0	0.85 0.77 0.79 0.82 1.03	21.3 +20 16.2 +24 13.5 +19 12.8 20.8		-9.0 -0.2 -5.7	37 38 15 24 31	65 128 103 125 79

Isotope values are calculated relative to Canyon Diablo Troilite (S) and PDB (C).

The data given in Table I are generally similar to those reported for other Apollo landing sites. Sulfur abundances agree well with the few published data for this site. Methane abundances are high, consistent with mature soils from a fairly ironrich environment (4), with characteristically high 8^{13} C values (1). The CO2 abundance data do not correlate with those for CH4, as observed elsewhere (2), suggesting either that this fraction of C is from a different source or that it is more prone to terrestrial contamination. Values given for FeO are preliminary, as results for implanted H2 are not yet available. Experience suggests that corrections for solar wind H, determined by pyrolysis, lower Fe^o values by about 0.1 wt%. Values for He are high but compatible with mature, mare-derived soils. Data for N2 should be regarded with caution as we have found that hydrolysis gives higher and more variable values than does our pyrolysis technique. For this reason, isotopic data are not presented for hydrolysis N2. Pyrolysis studies on soils and rocks are

SULFUR, METHANE AND METALLIC IRON

Kerridge J.F et al

presently being undertaken. Supported by NASA Grant # 05-007-221.

References.

- Chang S., Lawless J., Romiez M., Kaplan I.R., Petrowski C. (1)
- Sakai H. & Smith J.W., <u>Geochim.Cosmochim.Acta</u>, in press, 1974. Kerridge J.F., Kaplan I.R., Petrowski C. & Chang S., submitted to <u>Geochim.Cosmochim.Acta</u>, 1974. (2)
- Cadogan P.H., Eglinton G., Firth J.N.M., Maxwell J.R., Mays (3)
- B.J. & Pillinger C.T., Proc.3rd Lunar Sci. Conf.,p.2069,1972 Pillinger C.T., Batts B.D., Eglinton G., Gowar A.P., Juli (4)A.J.T. & Maxwell J. R., Nature Phys.Sci., 245, p.3, 1973.