INTERPRETATION OF GRAVITY ANOMALIES IN THE IRREGULAR MARIA,
R. J. Phillips, R. S. Saunders, Jet Propulsion Laboratory, California Institute
of Technology, Pasadena, CA.

We have argued that the anomalous masses giving rise to the so-called
mascons are most likely thin plate-like distributions of volcanic fill (1). Such
masses are superisostatic; i.e., they represent material added after a
circular basin has achieved isostatic equilibrium. Such equilibrium is
initially achieved by an undetermined combination of mantle rebound and basin
flooding. Many of the structural features of the circular basins can be
explained by isostatic adjustment of the excess masses, but compensation
is far from complete (2). We postulated that a simple hydrostatic mechanism
(3) gave rise to the excess masses and we showed that the amount of excess
mass, and hence the gravity anomaly, is linearly proportional to the basin
depth after initial compensation. If the circular basins were deeper than the
irregular maria prior to superisostatic filling, then the gross gravitational
difference between these two mare types is explainable.

We postulate that the last flooding in the circular basins, giving rise to
the mascons, occurred at a time when the lunar crust had cooled to a state too
rigid to allow complete isostatic compensation. If the above scenario is
correct, then volcanic accumulations in the irregular maria, and most
certainly those younger than the last circular mare fill, ought to give rise to
positive gravity anomalies.

The general pattern of gravity in the irregular maria is one of a general
background of approximately zero gravity, indicating regional isostatic com-
ensation, upon which are superimposed numerous and not insignificant
positive and negative gravity anomalies. The correlation of volcanic "centers"
with positive gravity anomalies has been previously noted (2) and we are now
attempting to test in detail this correlation. Independent determination of
accumulation thickness can lead to quantitative statements on the degree of
isostatic adjustment. Of particular interest is the striking correlation between
the positive gravity anomaly in southwestern Mare Tranquillitatis and the
anomalously thick accumulation of volcanics mapped by R. A. DeHon (personal
communication). These volcanics predate what is probably the mascon forming
material and in fact belong to the oldest (3.7 aeons) of three basic mare units
mapped by Soderblom (4). The implication is that the lunar crust was cold and
rigid prior to any of the observable volcanic flooding. Such information can
impart an important constraint on the thermal evolution of the crust. Further,
if the amount of (incomplete) compensation can be correlated with the ages of
the three units, then the amount and rate of deformation are also determined.
Adaptation of a temperature-viscosity relationship will then lead to a thermal
history of the crust during the time of mare flooding.
INTERPRETATION OF GRAVITY ANOMALIES IN THE IRREGULAR MARIA

Phillips, R. J. et al.

If the seismic velocity interpretation of 20 km of basalt in (at least) eastern Oceanus Procellarum is correct, then much of this accumulation must represent an early (eruptive?) phase that was isostatically compensated prior to the deposition of the three mare units.

References