THE FAST NEUTRON PRODUCTION OF ³⁷Ar IN THE DEEP DRILL STRING AND THE ²²²Rn, U, He AND HYDROGEN CONTENTS, R. W. Stoenner and R. Davis Jr., Chemistry Department, Brookhaven National Laboratory, Upton, N. Y. 11973 The production of fast neutrons in the lunar soil by galactic and solar cosmic rays was measured utilizing the fast neutron reaction 40 Ca(n, α) 37 Ar. A set of soil samples (<1 mm) from the deep drill string, the trench dug at station 8, and three associated surface samples were vacuum melted and analyzed for ³⁷Ar by procedures previously described. 1 The ³⁷Ar activities and the sample depths are listed in Table 1. The calcium content of several of these samples have been determined by other investigators2,3 who found the calcium content is essentially constant (7.8-8.0 percent). The 37Ar activities reported here and their respective calcium contents may be combined with similar data previously reported on the Apollo 16 deep drill sample to obtain the production of 37Ar from calcium as a function of the depth in the lunar soil. The 37 Ar production rate at the surface is 0.35 dpm/g Ca, a value derived from the measurements of Fireman et al 4 from the top of the Apollo 16 drill stem, and then reaches a maximum at a depth of $40-50~\rm g/cm^2$ and then decreases exponentially with depth, exhibiting a mean free path of $240^{+20}_{-30}~\rm g/cm^2$. This behavior is in agreement with expectation and compares favorably with the calculations of Reedy and Arnold, 5 and Kornblum et al. 6 The two scooped surface samples (depth of 0 to 4.5 g/cm²) were considerably higher than was observed in the surface samples from the Apollo 16 deep drill stem. The high values at the surface can be attributed to the intense solar flare of August 4-10, 1972 that occurred 126 days prior to the mission. The $^{37}\mathrm{Ar}$ activity at the surface of the moon must have been in the range of 8 to 12 dpm/g Ca at the end of the flare bombardment. In addition we measured the 39 Ar, tritium, 222 Rn, helium and hydrogen released from these samples. The 222 Rn activity and the helium and hydrogen contents obtained by vacuum melting and the uranium contents measured on an aliquot sample are listed in Table 1. The 222 Rn is produced by the 238 U decay, and should reflect the uranium content (0.740 dpm 222 Rn/ppm U). Our measurements show that in general the 222 Rn extracted is lower than expected from the measured uranium content by approximately 20 percent, but two of the samples were 27 percent higher. The procedures used were checked with W-1 standard samples, and it was found that the 222 Rn released agreed ($^{\pm4}$ %) with the amount expected from the uranium content of the sample. There is no clear explanation of the apparent lack of correspondence between the 226 Ra and 238 U concentrations. We obtained similar results in the Apollo 16 core, comparing 222 Rn activities to Silver's uranium contents. 1 The hydrogen and helium contents in the deep drill string increase with depth. The H/He content is relatively constant, with an average value 10. This value is close to the value of 7 to 10 observed in solar wind. 7 ## 37 Ar IN THE DEEP DRILL STRING Davis, R., Jr. Table 1 | Sample No. | Depth g/cm ² | 37 _{Ar}
dpm/kg | 222 _{Rn} dpm/g | Uranium
ppm | He
scc/g | H ₂
scc/g | |-------------|-------------------------|----------------------------|-------------------------|--|-------------|-------------------------| | 70181,6 | 0-4.5 | 115 ± 3.4 | 0.21 | 0.28 | 0.168 | 0.85 | | 75081,41-43 | 0-4.5 | 81.0 ± 3.4 | 0.15 | 0.24 | 0.146 | 0.66 | | 78441,2 | 11-27 | 48.2 ± 5.6 | 0.32 | 0.41 | 0.149 | 1.24 | | 78421,13 | 27-45 | 41.7 ± 5.4 | 0.31 | 1000 1000 1000 1000 1000 1000 1000 100 | 0.150 | 1.13 | | 70008,9 | 49 | 54.5 ± 3.3 | 0.11 | 0.20 | 0.069 | 0.80 | | 70008,7 | 72 | 49.4 ± 2.7 | 0.088 | 0.22 | 0.066 | 0.85 | | 70008,5 | 99 | 43.5 ± 3.1 | 0.11 | 0.21 | 0.063 | 0.80 | | 70008,3 | 124 | 37.4 ± 2.4 | 0.16 | 0.29 | 0.110 | 1.07 | | 70006,6 | 180 | 28.6 ± 2.0 | 0.28 | 0.30 | 0.101 | 0.83 | | 70005,6 | 252 | 19.5 ± 1.5 | 0.26 | 0.41 | 0.176 | 1.18 | | 70004,6 | 325 | 21.7 ± 1.7 | 0.24 | 0.41 | 0.144 | 1.19 | | 70003,6 | 399 | 13.6 ± 1.1 | 0.30 | 0.48 | 0.176 | 1.41 | | 70002,6 | 472 | 9.2 ± 1.2 | 0.62 | 0.66 | 0.136 | 1.63 | ## References - 1. R. W. Stoenner, R. Davis Jr., and M. Bauer, BNL manuscript prepared for 4th Lunar Conference. Lunar Science IV, pp. 692-3 (1973) and earlier references cited. - 2. P. A. Helmke, Trans. Am. Geophys. Union 54, No. 6, 595 (1973). - 3. Apollo 17 Preliminary Examination team, Science 182, 659 (1973). - 4. E. L. Fireman, J. D'Amico, and J. De Felice, Lunar Science IV, p. 248 (1973). - 5. R. C. Reedy and J. R. Arnold, J. Geophys. Res. 77, 537 (1972). - 6. J. J. Kornblum, M. Levine, A. Aronson, and E. L. Fireman, Lunar Science IV, p. 441 (1973). - 7. J. Hirshberg, Rev. Geophysics and Space Physics 11, 115 (1973).