EXPOSURE AGE AND OTHER INFORMATION ON LUNAR SURFACE MATERIAL AND METEORITES FROM 53Mn MEASUREMENTS

J. S. Fruchter, J. C. Laul, L. A. Rancitelli and R. W. Perkins, Battelle-Northwest, P.O. Box 999, Richland, WA 99352

Cosmogenic radionuclide production in the lunar surface and in meteorites can provide extremely useful and accurate information on exposure history, mixing rates of the lunar regolith, erosion rates of lunar rocks, recent exposure history, variations in solar or galactic flux, and on the size, shape and terrestrial age of meteorites.

The half life of 53Mn (3.7 million years), together with the measurement of 26Al (0.75 million years), permits the surface history of lunar rocks or the age of meteorites to be determined over a time scale of 10 million years. Measurements of this time period are not subject to memory effects which are inherent in rare gas age measurements such as those based on 81Kr-Kr.

In work reported here, we have measured 53Mn in several lunar rocks and in 4 meteorites. The lunar rock analyses confirm prior measurements based on either 53Mn or 81Kr-Kr ages, while measurements in meteorites provide a basis for real sample systematics which will permit accurate estimate of pre-atmospheric size and other events which may have occurred within the past 19 million years.

In Figure 1 we have plotted the 53Mn content of 3 lunar rock samples on a 53Mn growth curve. This growth curve is based on the predicted 53Mn production due to galactic protons only in the first 30 cm of the lunar regolith. These data indicate that 12002 (OP-6) and 14321 (RM-2) are saturated in 53Mn whereas 68815 is not. The two former samples were measured previously by one of the authors but have been analyzed again for cross-calibration purposes (1, 2). They have also been analyzed by the 81Kr-Kr age method and the ages determined from these measurements were used in plotting these points in the Figure (3). Sample 68815 is clearly undersaturated with respect to 53Mn. The 53Mn age date is 1.9 million years which compares to a reported 81Kr-Kr age date of 2.0 million years (3). These measurements are the first phase of a program which will estimate the lunar surface age of a large number of lunar rocks which were stated to have a relatively short lunar exposure age either on the basis of 26Al measurements or on the basis of 81Kr-Kr measurements. The number of rocks which appear to be undersaturated from the 26Al measurements greatly exceeds those which would be predicted from theoretical models of lunar regolith dynamics and manganese measurements should serve to confirm or refute the ages of these suspect samples (4, 5).

There have been relatively few measurements of 53Mn on meteorites, yet their analysis can provide important information...
EXPOSURE AGE & OTHER INFO.

J. S. Fruchter et al.

on the size, the exposure age and the time period since the last fracture of a meteorite. We have recently analyzed 2 samples of Allende, together with 1 sample each of the Peace River, Lost City, and Bruderheim Chondrites. These analyses, which will be discussed in detail at the Lunar Conference, permit one to place limits on the pre-atmospheric size of these chondritic meteorites. They will also provide a basis for the ^{53}Mn systematics of meteorites, which will extend the comparison of the galactic flux incident on the moon and meteorites further back in time.

REFERENCES

Exposure Ages and Other Info...

J. S. Fruchter, et al.