NEW CALCULATIONS AND ESTIMATIONS FOR HYDROTHERMAL ZONES AND IMPACT CONDITIONS ON CHICXULUB, EARTH AND ISIDIS PLANITIA, MARS.
J. C. Echaurren ${ }^{1}$ and A. C. Ocampo ${ }^{2}$, ${ }^{1}$ Codelco Chuquicamata, Chile, jecha001@codelco.cl , ${ }^{2}$ European Space Agency, ESTEC Keplerlaan 1, 2200 AG, Noordwijk, Netherlands, adriana.ocampo@esa.int

Synopsis: Chicxulub [1] is among the largest impact crater on Earth and a good analogue for Mars impact processes. Mars's Isidis Planitia [2] is one of the largest impact Planitias on Mars with a diameter of about $1,238 \mathrm{~km}$. Isidis is located at N 14.1 deg and W 271.0 degrees and is the boundary between ancient highlands and the Northern Plains. The exceptionally well-preserved Chicxulub crater is located in the Peninsula of Yucatan in Mexico, and research has identified at least 3 concentric structural rings, which comprise a complex $\sim 200 \mathrm{~km}$ diameter impact basin.

Analytical Method and Results: Our model [3,4] shows for Chicxulub that the asteroid diameter is $\sim 7.01 \mathrm{~km}$, with a velocity and impact angle of $\sim 47.38 \mathrm{~km} / \mathrm{s}$ and $\sim 33.12^{\circ}$ respectively. The number of rings are calculated in ~ 5.73 with a crater profundity of \sim 1.31 km and melt volume of $\sim 37,414 \mathrm{~km}^{3}$. The number of ejected fragments are estimated in $\sim 1,903$ millions with sizes of $\sim 5.66 \mathrm{~m}$, the asteroid density is $\sim 5.39 \mathrm{~g} / \mathrm{cm}^{3}$. The total energy in the impact is calculated in ~ 1.2 E30 Ergs, i.e., ~ 571 millions of Hiroshima. The hydrothermal zone is of $\sim 61.2 \mathrm{~km}$ to 98 km from the nucleus of impact. The lifetimes estimated are of $\sim 1.19 \mathrm{Ma}$ to 1.86 Ma with uncertainties of $\sim+/-0.0076$ Ma to $+/-0.0131 \mathrm{Ma}$. Hydrothermal temperatures for 0.25 years to 1,400 years are estimated in \sim $246.34^{\circ} \mathrm{C}$ to $96.65^{\circ} \mathrm{C}$. The fragments are ejected to $\sim 500.04 \mathrm{~km}$ from the impact center, with velocity of ejection of $\sim 5.87 \mathrm{~km} / \mathrm{s}$, ejection angle of $\sim 4.10^{\circ}$ and maximum height of $\sim 8.97 \mathrm{~km}$.

For Isidis Planitia, the asteroid diameter is $\sim 438.65 \mathrm{~km}$, with a velocity and impact angle of $\sim 19.42 \mathrm{~km} / \mathrm{s}$ and $\sim 74.09^{\circ}$ respectively. The number of rings could be ~ 206 with a crater profundity of ~ 4.8 km and melt volume of $\sim 5,765,600.6 \mathrm{~km}^{3}$. The number of ejected fragments are estimated in $\sim 3.3 \mathrm{E} 14$ with sizes of $\sim 6.35 \mathrm{~m}$. The total energy in the impact is calculated in $\sim 2.78 \mathrm{E} 33$ Ergs, i.e., \sim 66,110 millions of megatons. The hydrothermal zone is of ~ 69.69 km to 617.63 km from the nucleus of impact. The lifetimes estimated are of $\sim 68.09 \mathrm{Ma}$ to 106.28 Ma with uncertainties of $\sim+/-$ 0.88 Ma to $+/-3.74 \mathrm{Ma}$. Hydrothermal temperatures for 0.25 years to 1,400 years are estimated in $\sim 527.63^{\circ} \mathrm{C}$ to $207.16^{\circ} \mathrm{C}$. Finally the fragments are ejected to $\sim 79,276 \mathrm{~km}$ from the impact center, with velocity of ejection of $\sim 24.42 \mathrm{~km} / \mathrm{s}$, ejection angle of $\sim 75.18^{\circ}$ and maximum height of $\sim 74,894 \mathrm{~km}$, these enormous distances could to eject the fragments out of the Mars planet, in a closed orbit.

All the calculations are obtained using a HP 49g, which is a Scientific Programmable Graphing Calculator with 1.5 Mb in RAM memory.

References: [1] Pope, K.O., Ocampo, A.C., Kinsland, G.L., and Smith, R. (1996) Geology., 24, 527-530. [2] Scott, D., and Tanaka, K. (1986) Geological Survey Misc. Inv. Map, I-1802-A. [3] Pope, K.O., Baines, K.H., Ocampo, A.C., and Ivanov, B.A. (1997) Journal of Geophysical Research., 102, 21,645-21,664. [4] Echaurren, J.C., and Ocampo, A.C. (2003) EGS-AGU-EUG Joint Assembly.

