EXCESS ²³⁵U IN CHONDRITES: IMPLICATIONS FOR THE ²⁴⁷Cm-²³⁵U COSMOCHRONOMETER.

C. H. Stirling, A. N. Halliday, E. -K. Potter and M. B. Andersen. Institute for Isotope Geology and Mineral Resources, ETH Zürich.

The *r*-process only nuclide ²⁴⁷Cm decays to ²³⁵U with a characteristic half-life of ~16 million years. ²⁴⁷Cm is presently extinct, but offers considerable potential as a short-lived *r*-process chronometer, providing constraints on the time interval between the last *r*-process nucleosynthetic event and the formation of the solar system. The existence of "live" ²⁴⁷Cm in the early solar system should be manifested today as variations in ²³⁸U/²³⁵U, provided Cm was chemically fractionated from U when solids formed in the early solar system.

Using a Nu Instruments NuPlasma multiple-collector ICPMS and a high-purity mixed $^{233}U^{-236}U$ spike to monitor and correct for mass fractionation during chemical separation and isotopic analysis, we are able to resolve variations in $^{238}U/^{235}U$ at the two epsilon level ($2\sigma_{M}$; 1 epsilon = 1 part in 10,000) on sample sizes comprising <3 ng of total uranium, corresponding to <20 pg of ^{235}U .

Previous uranium isotopic measurements acquired on bulk samples of a suite of carbonaceous chondrite, ordinary chondrite and eucrite meteorites, for which conflicting results had previously been obtained, show no well-resolved excursions in $^{235}\text{U}/^{238}\text{U}$ from the terrestrial value at the ~2 epsilon level. These data constrain the amount of ^{247}Cm -produced excess ^{235}U atoms to less than ~1 x 10⁸ atoms per gram of chondritic meteorite, with respect to terrestrial $^{235}\text{U}/^{238}\text{U}$ [1].

We have extended the search for "live" ²⁴⁷Cm in the early solar system to small samples from mineral phases in primitive objects that are likely to display strong Cm-U fractionations. In particular, uranium isotopic measurements acquired on acidetched leachates for a suite of chondritic meteorites show positive anomalies in ²³⁵U/²³⁸U with respect to the compositions of the bulk samples and the terrestrial standard. These excursions are consistent with a model in which excess ²³⁵U was produced from the decay of live ²⁴⁷Cm in the early solar system. As such, these data have important implications for the ²⁴⁷Cm-²³⁵U cosmochronometer and the timing of *r*-process nucleosynthesis relative to the formation of the solar system materials.

References: [1] Stirling C. H., Halliday, A. N and Porcelli D. *Geochimica Cosmochimica Acta* in press.