CONSTRAINING THE EARLY SOLAR SYSTEM Cm/U RATIO.

J. M. Friedrich and U. Ott. Max-Planck-Institut für Chemie, Department of Cosmochemistry, Joh.-J.-Becher-Weg 27, D-55128 Mainz, Germany. E-mail: fried@mpch-mainz.mpg.de.

Introduction: The relative abundances of r-process nuclides within early solar system material reflect the complexity of the rprocess. For example, derived solar r-process residuals [1] show ³²Hf abundance is consistent with continuous r-process nucleosynthesis up to ~20 Ma before incorporation into the early solar system. However, using the same residuals, ¹²⁹I abundance would require a decay time of ~80 Ma. To accommodate this discrepancy, [2] suggested two types of r-processes that operate with different frequencies at different nuclidic mass ranges, each being main sources for either ¹²⁹I or ¹⁸²Hf. However, [3] favor coproduction of these nuclides in a single process: they note the current 247 Cm/ 235 U limit of <4 10⁻³ [4] is incompatible with measured ¹⁸²Hf abundance because all recognized theories demand co-production of actinides with Hf-mass range nuclides. We have been performing measurements to improve estimates of the early solar system ²⁴⁷Cm/²³⁵U abundance ratio to address if a distinct nucleosynthetic process is necessary to account for the (high) early solar system ¹⁸²Hf abundance.

Table 1: Comparison of time between steady state and early solar system abundance ratios for selected short-lived radionuclides.

	¹²⁹ I	¹⁸² Hf	²⁴⁴ Pu	²⁴⁷ Cm
T _{1/2} (Ma)	16	9	81	15.6
Ref. Nuclide	¹²⁷ I	¹⁸⁰ Hf	²³⁸ U	²³⁵ U
Prod. Ratio [1,5,6]	1.4	1.4	0.7	0.53
Steady State ISM Ratio [†]	0.0032	0.0018	0.013	0.012
Early Solar System Abun- dance Ratio [4,5]	1 10-4	1 10-4	7 10 ⁻³	< 4 10 ⁻³
$\Delta T_{Steady State - ESS Abundance}$	80 Ma	24 Ma	80 Ma	> 25 Ma

† Calculated using methods of [5] and references therein.

Methods: ²⁴⁷Cm decays to ²³⁵U through four nuclides with a half live of about 15.6 Ma. Deviations in ²³⁸U/²³⁵U ratios would likely be due to the former presence of ²⁴⁷Cm. We have used high-precision mass spectrometric methods to investigate the U isotopic composition of a wide variety of early solar system components and sequential acid digestions of them [7]. For this work, in addition to new isotopic results, we quantified REE in isotopically analyzed sample aliquots to estimate the degree of actinide fractionation possible within each sample.

Results and Discussion: Aside from a refractory Allende residue showing an enticing +4‰ anomaly – which needs to be analytically verified – we have found no statistically significant deviations (> ±1.8‰) from the ²³⁸U/²³⁵U solar system value of 137.88 in any of the 22 CAI, chondrite, or eucrite samples investigated. Currently, we are pursuing additional measurements of separated early solar system components to investigate possible trends emerging between LREE/U ratios and δ^{235} U. With our measurements, we will be able to shed new experimental light on nucleosynthetic theories.

References: [1] Arlandini C. et al. 1999 *Astrophys. J.* 525: 886-900. [2] Qian Y.-Z. et al. 1998 *Astrophys. J.* 494: 285-296. [3] Pfeiffer B. et al. 2001 *Nuc. Phys. A* 688: 575c-577c. [4] Chen J. H. and Wasserburg G. J. 1981 *Earth Planet Sci. Lett.* 52: 1-15. [5] Meyer B. S. and Clayton D. D. 2000 *Space Sci. Rev.* 92: 133-152 [6] Lingenfelter R. E. et al. 2003 *Astrophys. J.*, 591: 228-237. [7] Friedrich J. M. et al. 2004 Abstract #1575, 35th LPSC.