A MAGNESIAN GRANULITE CLAST IN LUNAR METEORITE ALHA81005. A.K. Maloy^{1,2}, A.H. Treiman², and C.K. Shearer Jr.^{3 1}Department of Earth Science, Rice University, Houston, TX 77005 (<u>maloyak@rice.edu</u>) ²Lunar & Planetary Institute, Houston, TX 77058 (<u>treiman@lpi.usra.edu</u>) ³Institute of Meteoritics, University of New Mexico, Albuquerque, NM 87131 (<u>cshearer@unm.edu</u>)

Introduction: Granulites are impact-metamorphosed rocks [1] found throughout the lunar highlands [2]. The composition of many lunar granulites cannot be linked to known highland lithologies [3]. Specifically, magnesian granulites (Mg* >70) are distinct from pristine highland rocks in major and trace element chemistry [4-6]. An additional distinction exists between the magnesian granulites in some feldspathic lunar meteorites and those collected by the Apollo missions [Treiman A.H., unpublished data]. We combine EMP element X-ray maps with EMP and SIMS mineral compositions to reconstruct the bulk chemical composition of a magnesian granulite in ALHA81005.

Sample and Methods: Analyses were performed on a magnesian granulite, Clast 3, in lunar meteorite ALHA81005,48. A compositionally representative field of Clast 3 was selected. Major and minor element X-ray maps, and compositions of major mineral phases in the clast, were acquired with a Cameca SX 100 EMP. The trace element compositions of major mineral phases were obtained by SIMS (Cameca ims 4f) at UNM. Element maps were imported into image-processing software and classified into mineral maps. The proportions of minerals were estimated from the histogram outputs of classifications. Mineral modes were translated into the mass % of each phase, and then combined with mineral compositions to calculate the bulk

chemistry of Clast 3 (Table 1).

Results and Discussion: Clast 3 is similar to other magnesian granulites in ALHA81005 [7]. It consists of approximately 66% plagioclase (An_{97.1}), 17% low-Ca pyroxene, 14% olivine (Fo_{81.5}), 2% augite, and traces of chromite, troilite, and whitlockite. The Mg* of Clast 3 is 82. From their concentrations in plagioclase, we infer La ~ 0.8xCI and Eu ~ 9.5xCI for bulk Clast 3. Clast 3 is similar to Mg-Suite rocks in plagioclase composition and Mg*, but is more feldspathic. Estimating Sm from La [6], Clast 3 has Ti/Sm ~ 4xCI, which is not in the range displayed by Apollo magnesian granulites. The composition of Clast 3 indicates that magnesian granulites in ALHA81005 are not like Apollo magnesian granulites, and are not simple mixtures of highland rocks in the Apollo sample set.

44.77
0.15
24.08
0.18
4.59
0.08
11.77
13.95
0.22
0.01
0.001
0.016
99.82
) 0.81
) 9.52

References: [1] Warner J.L. et al. 1977. *Proceeding of the 8th Lunar Science Conference* 2051-2066. [2] Wood J.A. et al. 1970. *Proceeding of the Apollo 11 Lunar Science Conference* 965-988. [3] Simonds C.H. et al. 1974. *Proceeding of the 5th Lunar Science Conference* 337-353. [4] Lindstrom M.M. and Lindstrom D.J. 1986. *Journal of Geophysical Research* 91(Suppl.): D263-D276. [5] Korotev R.L. and Jolliff B.L. 2001. Abstract #1455. 32nd Lunar & Planetary Science Con *ference.* [6] Korotev R.L. et al. 2003. *Geochimica et Cosmochimica Acta* 67: 4895-4923. [7] Goodrich C.A. et al. 1984. *Journal of Geophysical Research* 89 (Suppl.): C87-C94.