NOBLE GAS RETENTION AGES OF ANGRITES NWA 1296, NWA 2999/4931, NWA 4590 AND NWA 4801. D. Nakashima1,2, K. Nagao1, and A. J. Irving3. 1Laboratory for Earthquake Chemistry, University of Tokyo, Tokyo 113-0033, Japan; 2Dept. of Geol. & Geophys., University of Wisconsin, Madison, USA; naka@geology.wisc.edu; 3Dept. of Earth & Space Sci., University of Washington, Seattle, USA.

Introduction: It has been reported that three angrites NWA 2999/4931 (N29/49), NWA 4590 (N45), NWA 4801 (N48) contain 244Pu-derived Xe (T\textsubscript{1/2} \sim 80 Myr) [1], indicative of very ancient formation. Here we report new noble gas data for angrite NWA 1296 (N12), and calculate Pu-Xe ages and U/Th-4He ages based on noble gas data and chemical compositions [2-4].

NWA 1296: He, Ne and Ar are dominated by spallogenic and radiogenic components. The 3He exposure age (0.6 Ma) is shorter than those of 21Ne and 38Ar (2.3 Ma on average), suggesting 3He loss during the transit to the Earth. Kr may be affected by terrestrial contamination, and 81Kr exposure age cannot be estimated. Xe is dominated by spallogenic and 244Pu-derived Xe. No 129Xe excess from 129I decay (T\textsubscript{1/2} \sim 16 Myr) is observed, despite the fact that this angrite has an Al-Mg age of 4561 Ma [5].

U/Th-4He ages: The U/Th-4He ages of the four angrites studied are estimated as 170 - 4480 Ma (<3 % contribution of \textalpha-decay of 244Pu), indicating radiogenic 4He loss. Given the 3He exposure ages comparable to those of 21Ne, 38Ar and 81Kr (except for N12), the radiogenic 4He would have been lost by parent body processes. For N12, the radiogenic 4He loss could have also occurred with spallogenic 3He loss during the meteoroid flight.

Pu-Xe ages: The 244Pu-136Xe ages relative to Angra dos Reis (ADOR) are estimated in two ways: method (i) using 150Nd as proxy for the primordial 244Pu content [6] and method (ii) using spallogenic 126Xe as proxy for 150Nd [7]. The Pu-Xe ages of N12 estimated by the both methods and those of N29/49 estimated by method (i) are almost zero within the errors, suggesting contemporaneous formation with ADOR. Method (ii) gives extremely old ages for N29/49, because of high Ba content due to terrestrial contamination [8]. The Pu-Xe ages of N45 and N48 obtained by the two methods exceed zero even if taking 2\sigma errors. Given the Pb-Pb ages of N45 and N48 comparable to that of ADOR (~4558 Ma; [9]), the old Pu-Xe ages are attributed to overabundant fission 136Xe, i.e., parentless fission Xe. The parent body processes may not have affected fission Xe, but may have led to significant loss of radiogenic 4He.

Acknowledgements: We are grateful to N. Shirai for his help and constructive discussion.