Fe²⁺-Mg PARTITIONING BETWEEN OLIVINE AND MARTIAN BASALTIC MELTS.
California Institute of Technology, MC 170-25, Pasadena, CA 91125. amatzen@caltech.edu.

Introduction: The partitioning of elements between olivine and liquid is key to understanding igneous processes in mafic and ultramafic systems [1]. The landmark study of Roeder and Emslie [2] concluded that the olivine (ol)-liquid (liq) exchange coefficient, $K_{D,Fe^2+Mg} = (FeO/MgO)_{ol}/(FeO/MgO)_{liq}$ (by weight), is 0.30±0.03, independent of temperature (T) and liquid composition. Subsequent work [3] has shown a dependence on liquid composition, but the canonical value of 0.30 is still widely used in both terrestrial and Martian applications [e.g., 4, 5]. Here, we use previously published experiments on bulk compositions relevant to Martian magmas to determine the appropriate K_{D,Fe^2+Mg} for Martian systems; we then use this value to test whether any of the ol-phyric shergottites represent liquids.

Experiments on Martian Compositions: One-atm experiments on model Martian compositions provide the tightest constraint on K_{D,Fe^2+Mg} because T and oxygen fugacity (f_{O2}) are well known, allowing us to use [6] to predict the amount of ferrous iron present in each liquid. The median of 17 published 1-atm experiments yields $K_{D,Fe^2+Mg} = 0.354±0.008$ (error is one mean absolute deviation, MAD). There are higher pressure (P) experiments on model Martian compositions, but their f_{O2}s are less well constrained. High-P experiments in graphite capsules are reducing [7], but Fe³⁺ still materially affects estimates of K_{D,Fe^2+Mg}, correcting for the Fe³⁺ using [6,7] increases K_{D,Fe^2+Mg} on average, by 0.016. We see no strong correlations of K_{D,Fe^2+Mg} with liquid or ol composition for the high or low-P experiments and a weak increase in K_{D,Fe^2+Mg} with increasing P. A marked increase in K_{D,Fe^2+Mg} for high-P experiments at $T<~1150°C$ is likely due to lack of equilibrium. Accepting high-P experiments with $T >1150°C$ leads to a median K_{D,Fe^2+Mg} of 0.369±0.024 (MAD), higher than the 1-atm experiments but notably higher than the canonical value of 0.30 [2]. Combining 1-atm. and high-P, high-T experiments yields a median K_{D,Fe^2+Mg} of 0.360±0.013 (MAD), close to the recently reported value of 0.35±0.01 [8], which was obtained without correcting for Fe³⁺ in the liquid.

Olivine-phyric Shergottites: Using $K_{D,Fe^2+Mg} = 0.30$ leads to the result that none of the ol cores in ol-phyric shergottites are in equilibrium with liquids equivalent to their bulk. Applying our K_{D,Fe^2+Mg} to these shergottites, leads to the possibility that Y860059, NWA 5789 and 2990 are liquid compositions (others are not), identical to the results of [8]. Accounting for Fe³⁺ in the liquid also allows us to constrain plausible f_{O2}s during cooling when independent measures are unavailable or not yet determined; e.g., if the olivines in NWA 2990 are in equilibrium with a liquid whose composition is that of the bulk meteorite, crystallization must have occurred under reducing conditions where the Fe³⁺/Fe total is small, ~IW+0.5 at 1 atm or IW+1 at 1 GPa.