MIDPLANE TEMPERATURES OF PROTOPLANETARY DISKS UNDERGOING LAYERED ACCRETION

Michael Lesniak and Steve Desch. School of Earth and Space Exploration, Arizona State University. Email: michael.lesniak@asu.edu

Introduction: The high optical depths of protoplanetary disks (including those like the solar nebula, surrounding T Tauri stars) prevent direct observation of their midplane temperatures, T_{mid}. Models of the formation of such meteoritic inclusions as calcium-aluminum-rich inclusions (CAIs) and chondrules rely critically on T_{mid}, which are usually constrained instead by analytical or numerical models, such as [1]. Inputs to these models include the observed mass accretion rate onto the protostar, dM/dt. Typically, $10^{-9} < \frac{dM}{dt} < 10^{-7} M_{\odot}$ yr\(^{-1}\) for T Tauri stars [2], and accretional heating is competitive with heating by starlight within inner regions of the disk. All models for T_{mid} to date assume that accretional heating is uniform throughout the disk. This assumption is violated if the mechanism for mass flow through the disk is the magnetorotational instability (MRI) [3], since only the outer, ionized layers of the disk will be subject to the MRI, with little to no accretion in the interior “dead zone” [4]. The active layer column density has been estimated as $\Sigma_a \sim 100$ g cm\(^{-2}\) for disks adequately ionized by galactic cosmic rays [4], but estimates of the ionization fraction suggest only protostellar X rays are able to sufficiently ionize the disk, and imply $\Sigma_a \sim 10$ g cm\(^{-2}\) [5], or < 1% of the mass in a minimum-mass solar nebula disk (for which $\Sigma \sim 10^3$ g cm\(^{-2}\) at 1 AU). For a given dM/dt, midplane temperatures scale roughly as the fourth root of optical depth, or $\Sigma_a^{1/4}$ [1], so in cases where uniform accretional heating would predict high T_{mid}, layered accretional heating might predict temperatures only one third as large.

Results: We have developed a numerical code that calculates the temperatures and densities of a protoplanetary disk at all radii and heights above the midplane given the global properties of the protostar and disk, assuming simultaneous radiative and hydrostatic equilibrium. Accretional heating is included via a turbulent viscosity whose strength is controlled by dimensionless constant α [6]. We have tested a grid of values for dM/dt, α, and Σ_a with a 4000 K protostar. We find that when $dM/dt = 10^{-9} M_{\odot}$ yr\(^{-1}\), changing the column density of the active layer from 1 to 100 g cm\(^{-2}\) causes T_{mid} at 1 AU to rise from 103 K to 135 K. With $dM/dt = 10^{-8} M_{\odot}$ yr\(^{-1}\) T_{mid} at 1 AU rises from 103 K to 268 K. Finally, with $dM/dt = 10^{-7} M_{\odot}$ yr\(^{-1}\), we find that T_{mid} at 1 AU will be 437 K for a 100 g cm\(^{-2}\) active layer. When compared to previously assembled sets of disk model results [1], we find that our predicted midplane temperatures are consistently lower, by roughly a factor of 2, than theirs based on uniform accretional heating. Significantly, we find the dM/dt required for CAI formation temperatures ~ 1400 K, approaches $10^{-5} M_{\odot}$ yr\(^{-1}\). Mass accretion rates this high may be achieved only for very short timescales, < 10^7 yr, implying the CAI formation epoch may have been << 10^9 yr.