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4) Crystalline and glassy fragments on mega- 
regolith are repeated changes of states by slow or 
rapid cooling process at multiple smaller and larger 
impacts [6].  
5) Central peaks are not the remnants of deeper 
crust but final crystalline blocks of glassy regolith 
blocks due to relatively slow cooled glassy regolith 
at central peak of the lunar regolith crater [6]. 
6) Multiple shocked materials with carbon can be 
estimated from a) huge terrestrial craters (esp. 
ocean-impacts with water and crust rocks, which 
are mixed with slow and rapid cooled materials 
during excavation steps) [9, 10], and b) huge 
artificial impact explosions (esp. nuclear energy 
explosions, which are mixed with various cooled 
materials at air and/or sea explosions) [11, 12]. In 
this sense, the regolith evolution on the Moon and 
Asteroids should be compared largely with any 
characteristic features on mixed artificial materials 
with crystals and glasses with carbon [6]. 
   Carbon contents of lunar impact samples: 
From reported data of the Apollo lunar samples, 
impact materials of lunar regolith soils and breccias 
contain higher carbon contents as shown in Fig. 2 
[4-7], which suggest that higher carbon contents is 
characteristic of impact mixing process.  

Carbon contents of meteoritic samples: 
Carbon contents of E-chondritic meteorites from 
Asteroids show higher contents with higher iron 
metallic contents as shown in Fig. 2, though there 
are largely higher carbon contents obtained at 
carbonaceous chondrite estimated as impact 
remnants of air-rich planetary body [5-10]. There are 
few reports of in-situ surface materials at glassy 
regolith soils of airless Asteroids so far [6]. 

 
Fig. 2. Carbon contents of the Apollo lunar samples (left) 
and chondritic meteorites with Fe and FeO (right) [6, 7]. 
 

Carbon contents of products at artificial 
nuclear explosions: In order to select huge impact 
mixing materials on the impact craters and/or 
artificial huge explosions, melting materials of the 
Hiroshima nuclear energy explosions formed on 
August 6th, 1945 in Japan are used in this study due 
to systematic record of distance from center of 

explosion after formal permission from the Hiroshima 
Memorial Museum [10-12]. Any systematic distance data 
are not obtained at melting products on the Nagasaki 
(Japan) and Trinity site (New Mexico, USA) in this study. 

Carbon contents of the Hiroshima shocked 
materials: The highest carbon contents can be obtained in 
the center of explosions [11], where dust, soot and other 
materials (including organic calcite [11, 12]) flung up from 
the ground surface formed “black smoke” and dirt soot 
with water-drops in the air to form “a black rain “ fallen 
later. Detailed FE-ASEM analyses of the melted materials 
from center of explosions (ca.150m) to 4,600m show 
gradual decrease of carbon contents on selected 
carbon-bearing melting materials (shown in Fig.3 [10-12]). 

        
Fig.3. Carbon contents of the Hiroshima nuclear energy explosion 
products from center of explosion to outside (left) and detailed of 
used samples of the Hiroshima nuclear explosion with photos and 
some FE-SEM images (right) [11, 12] selected by author. 

 
Summary: The results are summarized as follows:  

1) Surfaces of airless Moon and Asteroids are mainly 
covered with regolith breccias formed by multiple impacts. 
2) Carbon content is one of indicator of huge impacts of 
the Apollo lunar regolith breccias and chondritic 
meteorites (from Asteroids), though any reports of glassy 
regolith soils of airless Asteroids are expected. 
3) Nuclear energy devices used can be applied to obtain 
more detailed data for impact materials in airless bodies.  
4) Higher carbon contents are obtained near at center (i.e. 
central peak site) of the Hiroshima huge nuclear explosion 
in the air after mixing melted materials with quenched rain.  
   Acknowledgements: Author thanks for the Hiroshima 
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Melting materials on Hiroshima nuclear explosion
Distance from center of explosion:

1) 150m Peace Museum MB (Melt blocks 5401-0017 ) 
2) 250m Kamiyacho RTB (Roof tie blocks 5304-0048)
3) 370m Zaimokucho PG (Roof powder grains 5305-0008) 
4) 630mToukamachi MRT (Melt round roof tie 5202-0447)
5) 750m Kokutaichi RTB (Roof tie blocks 5304-0292)
6) 850m Funairi/Kannon RTB (Roof tie blocks 5304-0058)  
7) 1,100m Kaijitsu/Ujina RTB (Roof tie blocks 5304-0293)
8) 1,300m Ginzan RTF (Roof tie fragments 206-0153)
9) 1,800m Hijiyama/Niho MRT (Melt roof tie 5205-0166)
10) 4,600m Kaijitsu/Ujina FRT (Flat roof tie 5201-0067)
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