SED MODELING AND LUMINOSITY EVOLUTION OF MASSIVE PROTOSTARS . S. Molinari1, S. Pezzuto1, M. Beltr\text{\'}an2, J. Brand3, R. Cesaroni4, F. Faustini1, P. Saraceno1. 1IFSI-INAF Rome, Italy, 2Universitat de Barcelona, Spain, 3IRA-INAF Bologna, Italy, 4Oss. Arcetri-INAF Firenze, Italy

The pre-Main Sequence evolution of High-Mass Young Stellar Objects is poorly characterised and understood compared to low-mass regimes, mostly due to inadequate observing spatial resolution and to the relatively shorter timescales to approach the Main Sequence. Critical parameters to trace the evolutionary stage of these objects are the circumstellar mass and the bolometric luminosity, that should rapidly increase as the object approaches the Main Sequence. However, the latter is a most difficult quantity to estimate in massive YSOs because the bulk of their SED falls at Far-IR wavelength where, given the clustered environment where massive YSOs form and their typical kpc-scale distance, IRAS spatial resolution is clearly not adequate to resolve the emission from individual cluster massive members. The ability to do so, greatly improves both at submm and at Near/Mid-IR wavelengths.

We use a publicly available radiative transfer code to fit the SEDs of a sample of young massive objects believed to be precursors of UltraCompact HII regions; we use data from the MSX survey and from submm dedicated SCUBA/SIMBA observations to constrain the bulk of the Far-IR emission and thus provide more accurate luminosity estimates for individual cluster members. In this poster we present the preliminary results of this study.

By comparing our sample sources with known UCHII regions or Hot Cores, we confirm the validity of the method to resolve different stages in high-mass YSO evolution using just macroscopic quantities such as M_{env} and L_{bol}. We stress the importance and the effectiveness of this method for the upcoming large area surveys of the Galactic Plane from Far-IR to submm with the HERSCHEL satellite and SCUBA2@JCMT.