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The main aim of this research is to constrain models
of the ice distribution with state-of-art lunar data and
to gain a better understanding of water ice dynamics
in the lunar sub-surface throughout the lunar history.
Although controversial in its physical form (e.g., crys-
talline as opposed to amorphous), there is increasing ev-
idence of water ice at the lunar poles “cold traps”. Such
locations plausibly hold not only water ice but also other
volatiles of economic and scientific value. Future mis-
sions may include rovers with the ability to sample ma-
terials from the top metre of the surface. This requires
the identification of regions to explore and sample with
the highest likelihood of finding water ice. Cold traps,
including those a few cm below the surface, are the most
plausible candidates.

To understand the current distribution of water ice in
the polar neighbourhoods, one needs to study the dy-
namics of water in the top layer of regolith throughout
lunar history. In a seminal paper, [1] investigated the
migration of H2O molecules in the lunar regolith by ran-
dom hops within the pores. In the current study, we pro-
pose to apply a more realistic diffusion model than the
ones used in [1] to regions of the lunar surface where the
measured temperatures (from LRO/Diviner) and the hy-
drogen maps (from Lunar Prospector) suggest that the
water ice has been stable over the last few billion years.

Subsurface water ice migration and stability re-
visited: Water molecules move through the interstices
in a porous regolith. In the Knudsen diffusion regime,
the molecules do not interact with one another, but move
in straight lines between points on the pore channel sur-
face. Upon collision with the surface, a molecule ad-
sorbs for some time, the residence time, that depends
on the local temperature. An irregular surface can be
considered as a perturbation on the top of a pore with a
smooth surface. Along the pore, there are a large num-
ber of voids with a power law size distribution within
the fractal range that describes the regolith at the Apollo
sites [2]. In order to produce more realistic water ice
distributions the effects of a fractal grain surface specifi-
cations are included in our novel analysis. We also study
the implications of considering that the water molecules
deposition and sublimation rates on the surface of a re-
golith grain to be the same [1]. This is justifiable if the
water vapor is in equilibrium with the ice mono-layers
on the grain surface. However, at locations where the
density of water molecules in the vapor phase is larger

(smaller) than the equilibrium vapor density [1] one ex-
pects deposition (sublimation) at a rate larger than the
one predicted by equilibrium.

An accurate understanding of the temperature profile
in the sub-surface is central to the modelling of the water
ice distribution with depth since the molecules’ mobil-
ity is controlled not only by the pore size and geome-
try but also by the residence time. We use temperature
maps constrained by the latest LRO Diviner measure-
ments [3]. However, besides the physical conditions for
ice stability one needs also to consider the places where
there had been a delivery of volatiles over the last two
and half billion years. The best candidates are the re-
gions that present the highest hydrogen concentrations
as seen by the joint analysis of Lunar Prospector Neu-
tron Spectrometer and topography data-sets [4]. Cur-
rently, we are considering including weathering and/or
gardening in our models [5].
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