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Introduction: Following the observation of H in 

lunar basaltic glasses [1], most of subsequent evidence  
has comes from analyses and interpretation of apatite 

grains in lunar igneous rocks [2-4]. Compositions of 

these apatites have been used to infer water contents of 

their parental magmas. To do this calculation properly 

requires knowing thermochemistry of volatile partition-

ing between apatite and melts, solid solution properties 

of apatites, and the effects of physical and chemical 

conditions on that partitioning.  

Thermochemistry: To constrain the volatile com-

positions of phases associated with lunar apatite, one 

needs precise and accurate thermochemical data on 

apatite and its solid solutions. Literature data for end-
member Ca-apatites are sufficient and mostly self-

consistent (fluorapatite: [5-8]; chlorapatite: [5,9-12]; 

hydroxylapatite: [5,10,11,l3,14]). The thermochemistry 

of solid solutions in Ca5(PO4)3(F,Cl,OH) are not en-

tirely clear. They may be ideal at the temperatures ex-

pected for lunar magmas and fluids [5,8,9], may also be 

non-ideal [15-17] consistent with evidence for anion 

ordering [18,19]. These apparent non-idealities have 

also been ascribed to solid solution of O2- in place of 

OH & Cl [8,20]. 

Apatite-Melt Partitioning: Partition coefficients 
(as normally defined) like DF

apat/basalt are strongly de-

pendent on compositions of both apatite and basalt. 

This dependency arises first because of closure: apatite 

must contain a fixed proportion of F+Cl+OH, while 

melts and fluids are not so constrained. Consider an 

OH-free, Cl-free, melt just saturated in F-apatite giving 

DF
apat/basalt = D0. The melt can accept more F, but the 

apatite cannot; thus DF
apat/basalt can vary, and be smaller 

than D0! Thus, use of an experimental value for DF
a-

pat/basalt can lead to an overestimate of the magma’s pro-

portion of F (or OH).  

More proper is to consider exchange equilibria like 
Ca5(PO4)3Cl + F-(melt) = Ca5(PO4)3F + Cl-(melt). For 

this, one can calculate an equilibrium constant K 
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 = K  (here assuming ideal 

solid and melt solutions). Experimental data on anion 

partitioning are accommodated (to zero order) by this 

simple model: Fig. 1. Scatter in those fits can be as-

cribed to analytical undertainties [23], and to other 

compositional dependencies (e.g., F-Cl and F-OH parti-

tionings are not identical [21,22], though they plot to-

gether in the Figure). Most of the literature data on apa-
tite/basalt partitioning are for OH-rich systems, which 

may not be relevant for lunar magmas.    

Conclusions: Although the thermochemistry of Ca 

apatites is fairly certain, more data are needed on their 

solid solutions at magmatic temperatures. There is a 

critical need for apatite/melt partitioning experiments 

with lunar-relevant compositions. Use of single-element 

partition coefficients (e.g., DF
apat/basalt) can lead to erro-

neous inferences. Apatite compositions can provide 

crucial clues to volatile abundances and proportions in 

lunar magmas, but must be interpreted with care.  
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Fig. 1. Anion partitioning between apatite and basalt melt 
[21,22], and model fits with K values as in the equation.  
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