Mercury Exploration Assessment Group

Mercury Publications

In an initiative to keep the community aware of Mercury-related research, MExAG posts updated bibliographies to its website each quarter. While we do our best to include all recent publications, we may unintentionally miss new work. Please help keep MExAG informed of recent Mercury-related publications by sharing your work with mexag.sc@gmail.com.
 

2022 (as of November)

Aizawa, S., Persson, M., Menez, T., André, N., Modolo, R., Génot, V., et al., (2022), LatHyS global hybrid simulation of the BepiColombo second Venus flyby, Planetary and Space Science 218, 105499. https://doi.org/10.1016/j.pss.2022.105499.

Barker, M. K., Chabot, N. L., Mazarico, E., Siegler, M. A., Martinez-Camacho, J. M., Hamill, C. D., & Bertone, S., (2022), New constraints on the volatile deposit in Mercury’s north polar crater, Prokofiev, The Planetary Science Journal 3, 188. https://doi.org/10.3847/PSJ/ac7d5a.

Bolzan, M. J. A., Echer, E., de Souza Franco, A. M., Hajra, R., (2022), Identification of the planetary magnetosphere boundaries with the wavelet multi-resolution analysis, Journal of Atmospheric and Solar-Terrestrial Physics 230, 105842. https://doi.org/10.1016/j.jastp.2022.105842.

Chaufray, J.-Y., Leblanc, F., Werner, A.I.E.. Modolo, R., Aizawa, S., (2022), Seasonal variations of Mg and Ca in the exosphere of Mercury, Icarus 384, 115081. https://doi.org/10.1016/j.icarus.2022.115081.

Deutsch, A. N., Colaprete, A., Heldmann, J. L., Elphic, R. C., & Cannon, K. M., (2022), Surface Roughness Variation across Polar Ice Deposit Boundaries on Mercury, Journal of Geophysical Research: Planets 127, e2021JE007114. https://doi.org/10.1029/2021JE007114.

Dibb, S. D., Bell, J. F., Garvie, L. A. J., (2022), Spectral reflectance variations of aubrites, metal-rich meteorites, and sulfides: Implications for exploration of (16) Psyche and other “spectrally featureless” asteroids, Meteoritics & Planetary Science 57, 1570–1588. https://doi.org/10.1111/maps.13891.

Dumberry, M., (2022), The gravity signal of Mercury’s inner core, Earth Space Sci. https://doi.org/10.1029/2022EA002344.

Franco, P., Izidoro, A., Winter, O. C, Torres, K. S., Amarante, A., (2022), Explaining Mercury via a single giant impact is highly unlikely, Monthly Notices of the Royal Astronomical Society 515, 5576–5586. https://doi.org/10.1093/mnras/stac2183.

Frantseva, K., Nesvorný, D., Mueller, M., van der Tak, F. F. S., ten Kate, I. L., Pokorný, P., (2022), Exogenous delivery of water to Mercury, Icarus, 114980. https://doi.org/10.1016/j.icarus.2022.114980.

Galiano, A., Capaccioni, F., Filacchione, G., & Carli, C., (2022), Spectral identification of pyroclastic deposits on Mercury with MASCS/MESSENGER data, Icarus 388, 115233. https://doi.org/10.1016/j.icarus.2022.115233.

Giacomini, L., Galluzzi, V., Massironi, M., Ferranti, L., Palumbo, P., (2022), Geology of the Kuiper quadrangle (H06), Mercury, Journal of Maps, 1–12. https://doi.org/10.1080/17445647.2022.2035268.

Goossens, S., Genova, A., James, P. B., Mazarico, E. (2022). Estimation of crust and lithospheric properties for Mercury from high-resolution gravity and topography, The Planetary Science Journal 3, 145. https://doi.org/10.3847/PSJ/ac703f.

Goossens, S., Renaud, J. P., Henning, W. G., Mazarico, E., Bertone, S., Genova, A., (2022), Evaluation of recent measurements of Mercury’s moments of inertia and tides using a comprehensive Markov chain monte carlo method, Planetary Science Journal 3, 37. https://doi.org/10.3847/PSJ/ac4bb8.

Hall, M. J. W., (2022), Simple precession calculation for Mercury: A linearization approach, American Journal of Physics, 90, 11. https://doi.org/10.1119/5.0098846.

Hirata, K., Morota, T., Sugita, S., Ernst, C. M., Usui T., (2022), Magma eruption ages and fluxes in the Rembrandt and Caloris interior plains on Mercury: Implications for the north-south smooth plains asymmetry, Icarus 382, 115034. https://doi.org/10.1016/j.icarus.2022.115034.

Ippolito, A., Plainaki, C., Zimbardo, G., Alberti, T., Massetti, S., Milillo, A., Orsini, S., (2022), Reconstruction of the magnetic connection from Mercury to the solar corona during enhancements in the solar proton fluxes at Mercury, Astronomy & Astrophysics 660, A50. https://doi.org/10.1051/0004-6361/202142328.

Jingchun, X., Chengli, H., Mian, Z. (2022) On the formation of thrust fault-related landforms in Mercury’s Northern Smooth Plains: A new mechanical model of the lithosphere. Icarus (in Press) doi: https://doi.org/10.1016/j.icarus.2022.115197.

Killen, R. M., Morrissey, L. S., Burger, M. H., Vervack Jr., R., J., Tucker, O. J., Savin, D. W., (2022), The influence of surface binding energy on sputtering in models of the sodium exosphere of Mercury, The Planetary Science Journal 3, 139. https://iopscience.iop.org/article/10.3847/PSJ/ac67de.

Lark, L. H., Parman, S., Huber, C., Parmentier, E. M., Head, J. W., (2022), Sulfides in Mercury's mantle: Implications for Mercury's interior as interpreted from moment of inertia, Geophysical Research Letters 49, e2021GL096713. https://doi.org/10.1029/2021GL096713.

Lapenta, G., Schriver, D., Walker, R. J., Berchem, J., Echterling, N. F., El Alaoui, M., Travnicek, P. (2022), Do we need to consider electrons' kinetic effects to properly model a planetary magnetosphere: The case of Mercury, Journal of Geophysical Research: Space Physics 127, e2021JA030241. https://doi.org/10.1029/2021JA030241.

Leblanc, F., Schmidt, C., Mangano, V., Mura, A., Cremonese, G., Raines, J. M., et al., (2022), Comparative Na and K Mercury and Moon Exospheres, Space Science Reviews 218, 2. https://doi.org/10.1007/s11214-022-00871-w.

Lierle, P., Schmidt, C., Baumgardner, J., Moore, L., Bida, T., Swindle, R., (2022), The Spatial Distribution and Temperature of Mercury’s Potassium Exosphere, The Planetary Science Journal 3, 87. https://doi.org/10.3847/PSJ/ac5c4d.

Lindsay, S. T., Bunce, E. J., Imber, S. M., Martindale, A., Nittler, L. R., Yeoman, T. K., (2022), MESSENGER X-Ray Observations of Electron Precipitation on the Dayside of Mercury, Journal of Geophysical Research: Space Physics 127, e2021JA029675. https://doi.org/10.1029/2021JA029675.

Lu, Q, et al., (2022), Three-dimensional global hybrid simulations of flux transfer event showers at Mercury, The Astrophysical Journal 937, 1. https://doi.org/10.3847/1538-4357/ac8bcf.

MacPherson, I., Dumberry, M., (2022), Deviation of Mercury’s spin axis from an exact Cassini state induced by dissipation, Journal of Geophysical Research: Planets 127, e2022JE007184. https://doi.org/10.1029/2022JE007184.

Malliband, C. C., Rothery, D. A., Balme, M. R., Conway, S. J., Pegg, D. L., & Wright, J., (2022), Geology of the Derain quadrangle (H10), Mercury, Journal of Maps. https://doi.org/10.1080/17445647.2022.2112774.

Manheim, M. R., Henriksen, M. R., Robinson, M. S., Kerner, H. R., Karas, B. A., Becker, K. J., et al. (2022), High-resolution regional digital elevation models and derived products from MESSENGER MDIS images, Remote Sensing 14, 3564. https://doi.org/10.3390/rs14153564.

McLennan, S. M., (2022), 8 - Composition of planetary crusts and planetary differentiation, In T. K. P. Gregg, R. M. C. Lopes, S. A. Fagents (Eds.), Planetary Volcanism across the Solar System (Vol. 1, pp. 287–331). Elsevier. https://doi.org/10.1016/B978-0-12-813987-5.00008-0.

Morrissey, L. S., Tucker, O. J., Killen, R. M., Nakhla, S., Savin, D. W., (2022), Solar wind ion sputtering of sodium from silicates using molecular dynamics calculations of surface binding energies, The Astrophysical Journal Letters 925, L6. https://doi.org/10.3847/2041-8213/ac42d8.

Munaretto, G., Lucchetti, A., Pajola, M., Cremonese, G., & Massironi, M., (2022), Assessing the spectrophotometric properties of Mercury’s hollows through multiangular MESSENGER/MDIS observations, Icarus 389. https://doi.org/10.1016/j.icarus.2022.115284.

Pinto, M., Sanchez-Cano, B., Moissl, R., Benkhoff, J., Cardoso, C., et al., (2022), The BepiColombo Environment Radiation Monitor, BERM, Space Science Reviews 218, 7. https://doi.org/10.1007/s11214-022-00922-2.

Pisello, A., Ferrari, M., De Angelis, S., Vetere, F. P., Porreca, M., Stefani, S., & Perugini, D., (2022), Reflectance of silicate glasses in the mid-infrared region (MIR): Implications for planetary research, Icarus 388, 115222. https://doi.org/10.1016/j.icarus.2022.115222.

Raines, J. M., Dewey, R. M., Staudacher, N. M., Tracy, P. J., Bert, C. M., et al., (2022), Proton precipitation in Mercury’s northern magnetospheric cusp, Journal of Geophysical Research: Space Physics 127, e2022JA030397. https://doi.org/10.1029/2022JA030397.

Renggli, C. J., Klemme, S., Morlok, A., Berndt, J., Weber, I., Hiesinger, H., King, P. L., (2022), Sulfides and hollows formed on Mercury’s surface by reactions with reducing S-rich gases, Earth and Planetary Science Letters 593, 117647. https://doi.org/10.1016/j.epsl.2022.117647.

Rivera-Valentín, E.G., Meyer, H.M., Taylor, P.A., Mazarico, E., Bhiravarasu, S.S., Virkki, A. K., Nolan, M. C., Chabot, N. L., Giorgini, J. D.., (2022), Arecibo S-band radar characterization of local-scale heterogeneities within Mercury’s north polar deposits, Planetary Science Journal 3, 62. https://doi.org/10.3847/PSJ/ac54a0.

Rognini, E., Mura, A., Capria, M.T., Milillo, A., Zinzi, A., Galluzzi, V., (2022), Effects of Mercury surface temperature on the sodium abundance in its exosphere, Planetary and Space Science 212, 105397. https://doi.org/10.1016/j.pss.2021.105397.

Schmid, D., Lammer, H., Plaschke, F., Vorburger, A., Erkaev, N. V., Wurz, P., et al., (2022), Magnetic evidence for an extended hydrogen exosphere at Mercury, Journal of Geophysical Research: Planets 127, e2022JE007462. https://doi.org/10.1029/2022JE007462.

Shi, Z., Rong, Z. J., Fatemi, S., Slavin, J. A., Klinger, L., Dong, C., et al., (2022), An eastward current encircling Mercury, Geophysical Research Letters 49, e2022GL098415. https://doi.org/10.1029/2022GL098415.

Speyerer, E. J., Robinson, M. S., & Sonke, A. J., (2022), Present day endogenic and exogenic activity on Mercury, Geophysical Research Letters 49, e2022GL100783. https://doi.org/10.1029/2022GL100783.

Sun, W., Slavin, J. A., Milillo, A., Dewey, R. M., Orsini, S., Jia, X., Raines, J. M., Livi, S., et al., (2022), MESSENGER observations of planetary ion enhancements at Mercury’s northern magnetospheric cusp during flux transfer event showers, Journal of Geophysical Research: Space Physics 127, e2022JA030280. https://doi.org/10.1029/2022JA030280.

Tikoo, S. M., Evans, A. J., (2022), Dynamos in the Inner Solar System, Annual Review of Earth and Planetary Sciences 50. https://doi.org/10.1146/annurev-earth-032320-102418.

Wang, J., Huo, Z., Zhang, L., (2022), Reconstructing Mercury's magnetic field in magnetosphere using radial basis functions, Planetary and Space Science 210, 105379. https://doi.org/10.1016/j.pss.2021.105379.

Wang, Y., Xiao, Z., Xu, R., (2022), Multiple mantle sources of high-magnesium terranes on Mercury, Journal of Geophysical Research: Planets 127, e2022JE007218. https://doi.org/10.1029/2022JE007218.

Werner, A. L. E., Aizawa, S., Leblanc, F., Chaufray, J. Y., Modolo, R., Raines, J. M., Exner, et al. (2022), Ion density and phase space density distribution of planetary ions Na+, O+ and He+ in Mercury’s magnetosphere, Icarus 372, 114734. https://doi.org/10.1016/j.icarus.2021.114734.

Wilbur, Z. E., Udry, A., McCubbin, F. M., vander Kaaden, K. E., DeFelice, C., Ziegler, K., Ross, D. K., et al., (2022), The effects of highly reduced magmatism revealed through aubrites, Meteoritics & Planetary Science 57, 1387-1420. https://doi.org/10.1111/maps.13823.

Wohlfarth, K., Wöhler, C., (2022), Wavelength-dependent seeing systematically changes the normalized slope of telescopic reflectance spectra of Mercury, Remote Sensing 14, 405. https://doi.org/10.3390/rs14020405.

Wurz, P., Fatemi, S., Galli, A., Halekas, J., Harada, Y., Jäggi, N., Jasinski, J., Lammer, H., et al., (2022), Particles and photons as drivers for particle release from the surfaces of the Moon and Mercury, Space Science Reviews 218, 10. https://doi.org/10.1007/s11214-022-00875-6.

Xie, J.-C., Huang, C.-L., & Zhang, M., (2022), On the formation of thrust fault-related landforms in Mercury’s Northern Smooth Plains: A new mechanical model of the lithosphere, Icarus 388, 115197. https://doi.org/10.1016/j.icarus.2022.115197.

Xie, J.-C., Zhang, M., & Huang, C.-L., (2022), Influence of Megaregolith on the thermal evolution of Mercury’s silicate shell, Research in Astronomy and Astrophysics 22, 035026. https://doi.org/10.1088/1674-4527/ac4ca1.

Xu, R., Xiao, Z., Wang, Y., & Xu, R., (2022), Pitted-Ground Volcanoes on Mercury, Remote Sens. 14, 4164. https://doi.org/10.3390/rs14174164.

Zambon, F., Carli, C., Wright, J., Rothery, D. A., Altieri, F., Massironi, M., Capaccioni, F., Cremonese, G.., (2022), Spectral units analysis of quadrangle H05-Hokusai on Mercury, Journal of Geophysical Research: Planets 127, e2021JE006918. https://doi.org/10.1029/2021JE006918.

Zhao, J.-T., Zong, Q.-G., Yue, C., Zhou, X.-Z., Liu, Z.-Y., et al., (2022), ULF Modulations on Plasma Environment and Coherent Waves of Mercury’s Magnetosphere: MESSENGER’s Observations, Journal of Geophysical Research: Space Physics 127, 9. https://doi.org/10.1029/2021JA030253.

Zhao, J.-T., Zong, Q.-G., Yue, C., Sun, W.-J., Zhang, H., Zhou, X.-Z., Le, G., Rankin, R., Slavin, J. A., Raines, J. M., Liu, Y., Wei, Y.., (2022), Observational evidence of ring current in the magnetosphere of Mercury, Nature Communications 13, 924. https://doi.org/10.1038/s41467-022-28521-3.

Zong, Q., Zhao, J., Liu, J., Fu, S., Sun, W., Zhang, H., et al., (2022), Magnetic storms in Mercury’s magnetosphere, Science China Technological Sciences. https://doi.org/10.1007/s11431-022-2009-8.

 

2021

Aizawa, S., Griton, L. S., Fatemi, S., Exner, W., Deca, J., Pantellini, F., Yagi, M., Heyner, D., Génot, V., André, N., Amaya, J., Murakami, G., Beigbeder, L., Gangloff, M., Bouchemit, M., Budnik, E., Usui H. (2021), Cross-comparison of global simulation models applied to Mercury’s dayside magnetosphere, Planetary and Space Science 198, 105176. https://doi.org/10.1016/j.pss.2021.105176.

Barraud, O., Besse, S., Doressoundiram, A., Cornet, T., Muñoz, C., (2021), Spectral investigation of Mercury's pits' surroundings: Constraints on the planet's explosive activity, Icarus 370, 114652. https://doi.org/10.1016/j.icarus.2021.114652.

Bauch, K. E., Hiesinger, H., Greenhagen, B. T., Helbert, J., (2021), Estimation of surface temperatures on Mercury in preparation of the MERTIS experiment onboard BepiColombo, Icarus 354, 114083. https://doi.org/10.1016/j.icarus.2020.114083.

Bertone, S., Mazarico, E., Barker, M. K., Goossens, S., Sabaka, T. J., Neumann, G. A., Smith, D. E., (2021), Deriving Mercury geodetic parameters with altimetric crossovers from the Mercury Laser Altimeter (MLA), Journal of Geophysical Research: Planets 126, e2020JE006683. https://doi.org/10.1029/2020JE006683.

Berrada, M., Secco, R. A., Yong, W., (2021), Adiabatic heat flow in Mercury's core from electrical resistivity measurements of liquid Fe-8.5 wt%Si to 24 GPa, Earth and Planetary Science Letters 568, 117053. https://doi.org/10.1016/j.epsl.2021.117053.

Byrne, P. K., Blewett, D. T., Chabot, N. L. et al., (2021), The case for landed Mercury science, Experimental Astronomy. https://doi.org/10.1007/s10686-021-09788-8.

Cassidy, T. A., Schmidt, C. A. , Merkel, A. W. , Jasinski, J. M., Burger, M. H., (2021), Detection of large exospheric enhancements at Mercury due to meteoroid impacts, Planetary Science Journal 2, 175. https://doi.org/10.3847/PSJ/ac1a19.

Clement, M. S., Raymond, S. N., Chambers, J. E., (2021), Mercury as the relic of Earth and Venus outward migration, The Astrophysical Journal Letters 923, L16. https://doi.org/10.3847/2041-8213/ac3e6d

Crane, K. T., Bohanon, A., (2021), Dike propagation during global contraction: Making sense of conflicting stress histories on Mercury, Frontiers in Earth Science 9, 752864. https://doi.org/10.3389/feart.2021.752864.

Deutsch, A.N., Head, J.W., Parman, S.W., Neumann, G.A., Lowden, F., (2021), Degassing of volcanic extrusives on Mercury: Potential contributions to transient atmospheres and buried polar deposits, Earth and Planetary Science Letters 564, 116907. https://doi.org/10.1016/j.epsl.2021.116907.

Feoktistova, E. A., Zharkova, A. Y., Kokhanov, A. A., Rodionova, Z. F., (2021), Migration of water molecules in the permanently shaded areas of polar areas of Mercury, Earth, Moon, and Planets 125, 5. https://doi.org/10.1007/s11038-021-09542-2.

Galluzzi, V., Oliveira, J. S., Wright, J., Rothery, D. A., Hood, L. L., (2021), Asymmetric magnetic anomalies over young impact craters on Mercury, Geophysical Research Letters 48, e2020GL091767. https://doi.org/10.1029/2020GL091767.

Glass, A. N., Raines, J. M., Jia, X., Tenishev, V., Shou, Y., Aizawa, S., Slavin, J. A., (2021), A 3D MHD-Particle tracing model of Na+ energization on Mercury's dayside, Journal of Geophysical Research: Space Physics 126, e2021JA029587. https://doi.org/10.1029/2021JA029587.

Guerrero, J. M., Lowman, J. P., Tackley, P. J., (2021), Did the cessation of convection in Mercury's mantle allow for a dynamo supporting increase in heat loss from its core?, Earth and Planetary Science Letters 571, 117108. https://doi.org/10.1016/j.epsl.2021.117108.

Heyner, D., Auster, H. U., Fornaçon, K. H., Carr, C., Richter, I., Mieth, J. Z. D., Kolhey, P., et al., (2021), The BepiColombo Planetary Magnetometer MPO-MAG: What can we learn from the hermean magnetic field? Space Science Reviews 217, 52. https://doi.org/10.1007/s11214-021-00822-x.

Hyodo, R., Genda, H., Brasser, R., (2021), Modification of the composition and density of Mercury from late accretion, Icarus 354, 114064. https://doi.org/10.1016/j.icarus.2020.114064.

Jäggi, N., Galli, A., Wurz, P., Biber, H., Szabo, P. S., Brötzner, J., Aumayr, F., et al., (2021), Creation of lunar and hermean analogue mineral powder samples for solar wind irradiation experiments and mid-infrared spectra analysis, Icarus 365, 114492. https://doi.org/10.1016/j.icarus.2021.114492.

Jäggi, N., Gamborino, D. Bower, D. J., Sossi, P. A., Wolf, A. S., Oza, A. V., Vorburger, A., Galli, A., Wurz P., (2021), Evolution of Mercury's earliest atmosphere, Planetary Science Journal 2, 230. https://iopscience.iop.org/article/10.3847/PSJ/ac2dfb.

Jasinski, J. M., Cassidy, T. A., Raines, J. M., Milillo, A., Regoli, L. H., Dewey, R., Slavin, et al., (2021). Photoionization loss of Mercury's sodium exosphere: Seasonal observations by MESSENGER and the THEMIS telescope, Geophysical Research Letters 48, e2021GL092980. https://doi.org/10.1029/2021GL092980.

Katsura, T., Shimizu, H., Momoki, N., Toh H., (2021), Electromagnetic induction revealed by MESSENGER's vector magnetic data: The size of Mercury's core, Icarus 354, 114112. https://doi.org/10.1016/j.icarus.2020.114112.

Knibbe, J. S., Rivoldini, A., Luginbuhl, S. M., Namur, O., Charlier, B., Mezouar, M., Sifre, D., Berndt, J., Kono, Y., Neuville, D.R., Westrenen, W. van, Hoolst, T.V., (2021), Mercury’s Interior Structure Constrained by Density and P-Wave Velocity Measurements of Liquid Fe-Si-C Alloys, Journal of Geophysical Research: Planets 126, e2020JE006651. https://doi.org/10.1029/2020JE006651.

Kotova, G., Verigin, M., Gombosi, T., Kabin, K., Slavin, J., Bezrukikh, V., (2021), Physics-based analytical model of the planetary bow shock position and shape, Journal of Geophysical Research: Space Physics 126, e2021JA029104. https://doi.org/10.1029/2021JA029104.

Kreslavsky, M. A., Zharkova, A. Yu., Head, J. W., Gritsevich, M. I., (2021), Boulders on Mercury, Icarus 369, 114628. https://doi.org/10.1016/j.icarus.2021.114628.

Lindsay, S. T. , Bunce, E. J., Imber, S. M., Martindale, A., Nittler, L. R., Yeoman, T. K., (2021), MESSENGER X-Ray observations of electron precipitation on the dayside of Mercury, Journal of Geophysical Research: Space Physics 127, e2021JA029675. https://doi.org/10.1029/2021JA029675.

Lucchetti, A., Pajola, M., Poggiali, G., Semenzato, A., Munaretto, G., Cremonese, G., Brucato, J.R., Massironi, M., (2021), Volatiles on Mercury: The case of hollows and the pyroclastic vent of Tyagaraja crater, Icarus 370, 114694. https://doi.org/10.1016/j.icarus.2021.114694.

Mangano, V., Dósa, M., Fränz, M., Milillo, A., Oliveira, J. S., Lee, Y. J., McKenna-Lawlor, S., et al., (2021), BepiColombo science investigations during cruise and flybys at the Earth, Venus and Mercury, Space Science Reviews 217, 23. https://doi.org/10.1007/s11214-021-00797-9.

McDonough, W. F., Yoshizaki, T., (2021), Terrestrial planet compositions controlled by accretion disk magnetic field, Progress in Earth and Planetary Science 8, 39. https://doi.org/10.1186/s40645-021-00429-4.

Mitrofanov, I. G., Kozyrev, A. S., Lisov, D. I., Litvak, M. L., Malakhov, A. A., Mokrousov, M. I., et al., (2021), The Mercury Gamma-Ray and Neutron Spectrometer (MGNS) onboard the Mercury Planetary Orbiter of the BepiColombo mission: Design updates and first measurements in space, Space Science Reviews 217, 67. https://doi.org/10.1007/s11214-021-00842-7.

Morlok, A., Renggli, C., Charlier, B., Reitze, M. P., Klemme, S., Namur, O., Sohn, M., Martin, D., Weber, I., Stojic, A. N., Hiesinger, H., Joy, K. H., Wogelius, R., Tollan, P., Carli, C., Bauch, K. E., Helbert, J., (2021), Mid-infrared reflectance spectroscopy of synthetic glass analogs for Mercury surface studies, Icarus 361, 114363. https://doi.org/10.1016/j.icarus.2021.114363.

Mouser, M. D., Dygert, N., Anzures, B. A., Grambling, N. L., Hrubiak, R., Kono, Y., Shen, S., Parman, S. W., (2021), Experimental investigation of Mercury’s magma ocean viscosity: Implications for the formation of Mercury’s cumulate mantle, its subsequent dynamic evolution, and crustal petrogenesis, Journal of Geophysical Research: Planets, In press. https://doi.org/10.1029/2021JE006946.

Orsini, S., Livi, S. A., Lichtenegger, H., Barabash, S., Milillo, A., De Angelis, E., Phillips, M., et al., (2021), SERENA: Particle instrument suite for determining the Sun-Mercury interaction from BepiColombo, Space Science Reviews 217, 11. https://doi.org/10.1007/s11214-020-00787-3.

Pajola, M., Lucchetti, A., Semenzato, A., Poggiali, G., Munaretto, G., Galluzzi, V., Marzo, G. A., Cremonese, G., Brucato, J. R., Palumbo, P., Massironi, M., (2021), Lermontov crater on Mercury: Geology, morphology and spectral properties of the coexisting hollows and pyroclastic deposits, Planetary and Space Science 195, 105136. https://doi.org/10.1016/j.pss.2020.105136.

Pegg, D. L., Rothery, D. A., Conway, S. J., Balme, M. R., (2021), A fault surface exposed on Mercury, Planetary and Space Science 201, 105223. https://doi.org/10.1016/j.pss.2021.105223.

Pegg, D.L., Rothery, D.A., Balme, M.R., Conway, S.J., (2021), Explosive vent sites on Mercury: Commonplace multiple eruptions and their implications. Icarus 365, 114510. https://doi.org/10.1016/j.icarus.2021.114510.

Peterson, G. A., Johnson, C. L., Jellinek, A. M., (2021), Thermal evolution of Mercury with a volcanic heat-pipe flux: Reconciling early volcanism, tectonism, and magnetism, Science Advances 7, 40. https://doi.org/10.1126/sciadv.abh2482.

Phillips, M. S., Moersch, J. E., Viviano, C. E., Emery, J. P., (2021), The lifecycle of hollows on Mercury: An evaluation of candidate volatile phases and a novel model of formation, Icarus 359, 114306. https://doi.org/10.1016/j.icarus.2021.114306.

Plattner, A. M., Johnson, C. L. (2021), Mercury’s northern rise core-field magnetic anomaly. Geophysical Research Letters, in press, e2021GL094695. https://doi.org/10.1029/2021GL094695.

Pokorný, P., Mazarico, E., Schorghofer N., (2021), Erosion of volatiles by micrometeoroid bombardment on Ceres and comparison to the Moon and Mercury, Planetary Science Journal 2, 85. https://doi.org/10.3847/PSJ/abef04.

Reitze, M. P., Weber, I., Morlok, A., Hiesinger, H., Bauch, K. E., Stojic, A. N., Helbert, J., (2021), Mid-Infrared Spectroscopy of Anorthosite Samples from near Manicouagan Crater, Canada, as Analogue for Remote Sensing of Mercury and Other Terrestrial Solar System Objects, Journal of Geophysical Research: Planets 126, e2021JE006832. https://doi.org/10.1029/2021JE006832.

Reitze, M. P., Weber, I., Morlok, A., Hiesinger, H., Bauch, K. E., Stojic, A., N., Helbert, J., (2021), Mid-infrared spectroscopy of crystalline plagioclase feldspar samples with various Al,Si order and implications for remote sensing of Mercury and other terrestrial Solar System objects, Earth and Planetary Science Letters 554, 116697. https://doi.org/10.1016/j.epsl.2020.116697.

Romanelli, N., DiBraccio, G. A., (2021), Occurrence rate of ultra-low frequency waves in the foreshock of Mercury increases with heliocentric distance, Nature Communications 12, 1–11. https://doi.org/10.1038/s41467-021-26344-2.

Rothery, D. A., Barraud, O., Besse, S., Carli, C., Pegg, D. L., Wright, J., Zambon, F., (2021), On the asymmetry of Nathair Facula, Mercury, Icarus 355, 114180. https://doi.org/10.1016/j.icarus.2020.114180

Schörghofer, N., Benna, M., Berezhnoy, A. A., Greenhagen, B. Jones, B. M., Li, S., Orlando, T. M., Prem, P., Tucker, O. J., Wöhler, C., (2021), Water group exospheres and surface interactions on the Moon, Mercury, and Ceres, Space Science Reviews 217, 74. https://doi.org/10.1007/s11214-021-00846-3.

Schmid, D., Narita, Y., Plaschke, F., Volwerk, M., Nakamura, R., Baumjohann, W., (2021), Pick-up ion cyclotron waves around Mercury, Geophysical Research Letters 48, e2021GL092606. https://doi.org/10.1029/2021GL092606.

Slavin, J. A., Imber, S. M., Raines, J. M., (2021), A Dungey Cycle in the Life of Mercury's Magnetosphere, In N. A. R. Maggiolo, H. Hasegawa, D.T. Welling, Y. Zhang and L.J. Paxton (Ed.), Magnetospheres in the Solar System (pp. 535–556), Hoboken, NJ: the American Geophysical Union and John Wiley and Sons, Inc.

Stojic, A. N., Morlok, A., Tollan, P., Kohout, T., Hermann, J., Weber, I., Moreau, J.-G., Hiesinger, H., Sohn, M., Bauch, K. E., Reitze, M. P., Helbert, J., (2021), A shock recovery experiment and its implications for Mercury's surface: The effect of high pressure on porous olivine powder as a regolith analog, Icarus 357, 114162. https://doi.org/10.1016/j.icarus.2020.114162.

Sun, W., Dewey, R. M., Aizawa, S., Huang, J., Slavin, J. A., Fu, S., Wei, Y., Bowers, C. F., (2021), Review of Mercury’s dynamic magnetosphere: Post-MESSENGER era and comparative magnetospheres, Science China Earth Sciences 65, 25–74. https://doi.org/10.1007/s11430-021-9828-0.

Sun, L.-Z., Huang, C.-L., Yu, Y., Qi, Z.-X., Tang, Z.-H., Zhao, M., Yang, D.-H., Wu, T., (2021), A new telescope with three fields of view to measure the orientation parameters of the Moon and terrestrial planets, Research in Astronomy and Astrophysics 21, 040. https://doi.org/10.1088/1674-4527/21/2/40.

Susorney, H.C.M., Ernst, C.M., Chabot, N.L., Deutsch, A.N., Barnouin, O.S., (2021), Morphometry and Temperature of Simple Craters in Mercury’s Northern Hemisphere: Implications for Stability of Water Ice, Planetary Science Journal 2, 97. https://doi.org/10.3847/PSJ/abf4ca.

Tao, R., Fei, Y. (2021), High-pressure experimental constraints of partitioning behavior of Si and S at the Mercury's inner core boundary, Earth and Planetary Science Letters 562, 116849. https://doi.org/10.1016/j.epsl.2021.116849.

Wang, Y., Xiao, Z., Chang, Y., Xu, R., Cui, J., (2021), Short-term and global-wide effusive volcanism on Mercury around 3.7 Ga, Geophysical Research Letters 48, e2021GL094503. https://doi.org/10.1029/2021GL094503.

Watters, T. R., (2021), A case for limited global contraction of Mercury, Communications Earth and Environment 2, 9. https://doi.org/10.1038/s43247-020-00076-5.

Wright, J., Byrne, P. K., & Rothery, D. A., (2021), Planet Mercury: Volcanism in a theatre of global contraction, with examples from the Hokusai quadrangle, Journal of Volcanology and Geothermal Research 417, 107300. https://doi.org/10.1016/j.jvolgeores.2021.107300

Xiao, Z., Xu, Rui, Wang, Y., Chang, Y., Xu, Ru, Cui, J., (2021), Recent dark pyroclastic deposits on Mercury, Geophysical Research Letters 48, e2021GL092532. https://doi.org/10.1029/2021GL092532.

 

2020

Barraud, O., Doressoundiram, A., Besse, S., Sunshine, J. M. (2020). Near-Ultraviolet to Near-Infrared Spectral Properties of Hollows on Mercury: Implications for Origin and Formation Process. Journal of Geophysical Research: Planets 125, e2020JE006497. https://doi.org/10.1029/2020JE006497.

Crane, K. T., (2020), Approach and application of industry software to structural investigations in the subsurface of Mercury’s thrust fault-related landforms, Journal of Structural Geology 141, 104218. https://doi.org/10.1016/j.jsg.2020.104218.

Crane, K. T., (2020), Structural interpretation of thrust fault-related landforms on Mercury using Earth analogue fault models, Geomorphology 369, 107366. https://doi.org/10.1016/j.geomorph.2020.107366.

Dewey, R. M., Slavin, J. A., Raines, J. M., Azari, A. R., & Sun, W., (2020), MESSENGER observations of flow braking and flux pileup of dipolarizations in Mercury’s magnetotail: Evidence for current wedge formation, Journal of Geophysical Research: Space Physics 125, e2020JA028112. https://doi.org/10.1029/2020JA028112.

Du, J., Wieczorek , M. A., Fa, W., (2020), Thickness of lava flows within the Northern Smooth Plains on Mercury as estimated by partially buried craters, Geophysical Research Letters 47, e2020GL090578. https://doi.org/10.1029/2020GL090578.

Hamill, C. D., Chabot, N. L., Mazarico, E., Siegler, M. A., Barker, M. K., Martinez Camacho, J. M., (2020), New illumination and temperature constraints of Mercury’s volatile polar deposits, The Planetary Science Journal 1, 57. https://doi.org/10.3847/PSJ/abb1c2.

James, M. K., Imber, S. M., Raines, J. M., Yeoman, T. K., Bunce, E. J. (2020), A machine learning approach to classifying MESSENGER FIPS proton spectra, Journal of Geophysical Research: Space Physics 125, e2019JA027352. https://doi.org/10.1029/2019JA027352.

Jasinski, J.M., Regoli, L.H., Cassidy, T.A. Dewey, R.M., Raines, J.M., Slavin, J.A., Coates, A.J., Gershman, D.J., Nordheim, T.A., Murphy, N., (2020), A transient enhancement of Mercury’s exosphere at extremely high altitudes inferred from pickup ions, Nature Communications 11, 4350. https://doi.org/10.1038/s41467-020-18220-2.

Milillo, A., Fujimoto, M., Murakami, G., Benkhoff, J., Zender, J., Aizawa, S., Dósa, M., et al., (2020), Investigating Mercury’s environment with the two-spacecraft BepiColombo mission, Space Science Reviews 216, 93. https://doi.org/10.1007/s11214-020-00712-8.

Rodriguez, J. A. P., Leonard, G. J., Kargel, J. S., Domingue, D., Berman, D. C., Banks, M., Zarroca, M., Linares, R., Marchi, S., Baker, V. R., Webster, K. D., Sykes, M., (2020), The chaotic terrains of Mercury reveal a history of planetary volatile retention and loss in the innermost Solar System, Scientific Reports 10, 4737. https://doi.org/10.1038/s41598-020-59885-5.

Romanelli, N., DiBraccio, G. A., Gershman, D. J., Le, G., Mazelle, C., Meziane, K., Boardsen, S., Slavin, J., Raines, J., Glass, A., Espley, J., (2020), Upstream ultra‐low frequency waves observed by MESSENGER's magnetometer: Implications for particle acceleration at Mercury's bow shock, Geophysical Research Letters 47, e2020GL087350. https://doi.org/10.1029/2020GL087350.

Rothery, D.A., Massironi, M., Alemanno, G., et al., (2020), Rationale for BepiColombo studies of Mercury’s surface and composition, Space Science Reviews 216, 66. https://doi.org/10.1007/s11214-020-00694-7.

Tenthoff, M., Wohlfarth, K., Wöhler, C. (2020), High resolution digital terrain models of Mercury, Remote Sensing 12, 3989. https://doi.org/10.3390/rs12233989.

Wang, Y., Xiao, Z., Chang, Y., Cui, J., (2020), Lost Volatiles During the Formation of Hollows on Mercury, Journal of Geophysical Research: Planets 125, e2020JE006559. https://doi.org/10.1029/2020JE006559.

Wright, J., Conway, S. J., Morino, C., Rothery, D. A., Balme, M. R., Fassett, C. I., (2020), Modification of Caloris ejecta blocks by long-lived mass-wasting: A volatile-driven process?, Earth and Planetary Science Letters 549, 116519. https://doi.org/10.1016/j.epsl.2020.116519.

  • Home
  • Terms of Reference
  • Committee
  • MExAG Documents
  • Mercury Meetings
  • Early Career Opportunities
  • Mailing List
  • Newsletters
  • Mercury Publications

Connect With Us

  •  @ExploreMercury
  •  mexag.sc@gmail.com

Connect With LPI

  • LPI Homepage
  • Twitter
  • Facebook
  • You Tube

Privacy Policy  |   Photo Policy  |   Code of Conduct  |   Media Policy  |   Terms of Use

© - Lunar and Planetary Institute | Site Map