Europa Exploration: Challenges and Solutions

T. V. Johnson1, K. Clark1, R. Greeley2, R. Pappalardo1,3

1Jet Propulsion Laboratory, Pasadena, CA, 2Arizona State University, Tempe AZ, 3U. of Colorado, Boulder CO

Arctic Ice Sounds: courtesy of Nick Makris, Ocean Engineering, MIT
ALL THESE WORLDS ARE YOURS EXCEPT EUROPA ATTEMPT NO LANDING THERE

NO PROBLEM: ARTHUR GAVE HIS OK
Exploring Europa is HARD!

• Long trip times, low delivered mass fractions “It’s the rocket equation, stupid”

• RADIATION (BOO!)

But POSSIBLE!

Pre-decisional, for planning purposes only
History

• Galileo – we did operate successfully in the Europa environment in flyby mode
• Europa Orbiter (BFC to Europa)
 – Direct trajectory (dry mass ~ 1000 kg)
 – Limited payload - ~ 20 kg
 – Radiation tolerant electronics development needed – computers, avionics, memory
 – Limited time in orbit – 30 days
 – Cancelled 2001
• JIMO (a bridge too far)
 – Nuclear Electric Propulsion
 – Large payload - ~ 1500 kg
 – Science requirements developed by JIMO SDT (R. Greeley, T. Johnson *et al.*)
 – ‘Deferred’… indefinitely… in 2005
History cont’d

• Europa Geophysical Explorer – JPL Study for NASA
 – Science: OPAG Europa subgroup – R. Greeley et al.
 – Explored indirect trajectories, larger payloads
 – Studied options for radioisotope power in 2012 period

• This study: Europa Explorer Concept
 – JPL funded study
 – Science based on previous SDT and OPAG input organized by an ad hoc science team (i.e. some of the usual suspects)
 – Goal: Take advantage of previous investments in radiation hardening and mission concepts to develop an exciting Europa mission with existing technology that could be done in the next decade.
Key Factors

• Indirect trajectories
 – Mass margin available for science payload, shielding, power, possible surface science

• Radiation Tolerant Electronics
 – Current technology is sufficient
 – 2 yr mission at Jupiter – 1.5 yr Jupiter system, 3 months + on orbit at Europa

• Communications
 – 400 Kbps real-time mission with rad-hard buffer
 – Europa data volume = ~ 3 yrs of Cassini data return

• Planetary Protection: End-of-mission impact
 – Radiation sterilization of surfaces and unshielded components combined with pre-launch sterilization of shielded areas
The Mission

Indirect trajectories – the key to reasonable mass margins
Interplanetary Trajectory Options

Estimated Orbiter Dry Mass

Jupiter Arrival Date

Pre-decisional, for planning purposes only
The rocket equation can be beaten or at least cheated by stealing energy from the planets!

Direct trajectory: \(~ 1\) Ton spacecraft
Earth GA trajectory: \(~ 2\) Ton spacecraft
Venus-Earth GA trajectory: \(~ 3\) Ton spacecraft

Cost – trip time to target (e.g. Galileo, Cassini)
Representative Jupiter Arrival

Time ticks:
- S/C: 3 hrs
- Io: 2 hrs
- Europa: 3 hrs
- Ganymede: 6 hrs
- Callisto: 12 hrs

G0 flyby at 500 km altitude

Position of Galilean satellites denoted at time of Penjove 0.
Sun direction fixed toward top of page

Pre-decisional, for planning purposes only
Representative Jovian Tour

<table>
<thead>
<tr>
<th>Encounter</th>
<th>Days Since Last Encounter</th>
<th>Encounter</th>
<th>Days Since Last Encounter</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>—</td>
<td>E13</td>
<td>9</td>
</tr>
<tr>
<td>G2</td>
<td>30</td>
<td>J14</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>34</td>
<td>G15</td>
<td>13</td>
</tr>
<tr>
<td>G4</td>
<td>40</td>
<td>J16</td>
<td></td>
</tr>
<tr>
<td>G5</td>
<td>21</td>
<td>E17</td>
<td>8</td>
</tr>
<tr>
<td>C6</td>
<td>9</td>
<td>J18</td>
<td></td>
</tr>
<tr>
<td>J7</td>
<td></td>
<td>J19</td>
<td></td>
</tr>
<tr>
<td>G8</td>
<td>39</td>
<td>E20</td>
<td>14</td>
</tr>
<tr>
<td>J9</td>
<td></td>
<td>J21</td>
<td></td>
</tr>
<tr>
<td>G10</td>
<td>21</td>
<td>J22</td>
<td></td>
</tr>
<tr>
<td>G11</td>
<td>7</td>
<td>J23</td>
<td></td>
</tr>
<tr>
<td>J12</td>
<td></td>
<td>J24</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>J25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>E01</td>
<td>23</td>
</tr>
</tbody>
</table>

Sun-Jupiter Fixed View

Pre-decisional, for planning purposes only
Lifetime of Science Orbit

Europa Science Orbit Duration vs Eccentricity
Arg of Periapse = -90°, Inclination = 110°
Created on 09-13-2004 at 03:13PM

J₃ Values
- 0
- +3.0E-06
- +5.0E-06
- +7.0E-06
- +3.0E-05
- +5.21E-05
- +7.04E-05

Duration (days)

Initial Eccentricity

Pre-decisional, for planning purposes only
Occultations in Science Orbit

- Earth occulted by Europa
 - Max ~37% of the time for 100 km orbit (2.1 hour period)
 - Max ~33% of the time for 200 km orbit (2.3 hour period)
- Earth occulted by Jupiter ~2.5 hours every Europa rev (3.55 days)
 - ~3% of the time
- Solar eclipses have similar duration
The Spacecraft

Pre-decisional, for planning purposes only
Science Instrument View

- MeV Ion Spectrometer
- Ice Penetrating Radar
- KeV Ion Spectrometer
- Ion and Neutral Mass Spectrometer
- Wide Angle Camera
- Medium Angle Camera
- Laser Altimeter
- IR Mapping Spectrometer
- Thermal Imager
- 10 m Mag Boom

Pre-decisional, for planning purposes only
The reference Europa Explorer mission concept has the following capabilities:

- Launch mass capability: 7230 kg
- Spacecraft wet mass: 6888 kg
- Spacecraft dry mass: 2608 kg
- Power available (EOM): 823 W
- Number of MMRTGs: Eight
- Data rate (@5.5 AU): 400 kb/s

This leaves an additional 340 kg of unallocated mass that may be used for greater spacecraft margin and/or mission enhancements.
EE Functional Description Summary - 1

- **General**
 - 3-axis stabilized
 - MMRTG powered, with battery
 - 10 body-fixed instruments
 - Deployed appendages: HGA, MAG, IPR
 antenna array

- **Communications**
 - X-band; 50 W(RF); gimbaled 3m HGA
 - Ka up/down for science; 3.5 W transmitter

- **Data Handling**
 - RAD750 processors
 - 1553 bus + LVDS interfaces
 - Separate science computer and mass memory
 - Small mass data memories: 300 Mbit
• **Attitude and Propulsion**
 - Reaction wheels
 - Star sensor/IRU/sun sensors
 - 900 N bipropellant main engine
 - 4.5 and 32.5 N monoprop thrusters
 - Translational thrusting in 6 directions

• **Thermal Control, using:**
 - RTG waste heat
 - 140 Radioisotope Heater Units (RHUs)
 - 120 used on Galileo
 - 117 used on Cassini
 - 8 used on each MER rover
 - Electrical heaters, blankets, louvers, etc.
Lander Concepts

Impactor
Airbag Landers
Soft Landers

Europa Explorer Unallocated Mass – 340Kg

Pre-decisional, for planning purposes only
Data

Pre-decisional, for planning purposes only
Data Return Solution

- Continuous coverage by the Deep Space Network

- Science memory of only 300 Mb stores data when the spacecraft is behind Europa

- Mission returns 21 Gb/day at the start of the mission increasing to 35 Gb/day after 90 days

- Mission acquires ~3 Tb total data in the 90 day Prime Mission

3/10/2006 Pre-decisional - for discussion purposes only
RADIATION

NOT HEALTHY: FOR CARBON OR SILICON BASED LIFE FORMS

Pre-decisional, for planning purposes only
Radiation Hardening: Progress

- Galileo design standard: 150,000 rad Si
- Current situation: NASA and DOD radiation hardening development in last decade has yielded:
 - Flight computers (Pentium class): 1,000,000 rad Si
 - Many avionics and flight parts: > 300,000 rad Si
- Better characterization of environment by Gaileo

Bottom Line: With mass for shielding, a Europa mission can now be done with *current technology*
Radiation Design and Mitigations

- **More Rad hard electronics are available**
 - Rad 750 is now in use – it is on MRO
 - Power electronics developed by JIMO before cancellation
 - DOD work has led to more parts being available

- **Galileo experience and knowledge base**
 - Radiation environment model – significantly refined with Galileo data
 - Failure history – what failed, when and why
 - Mitigation methods – annealing, operational work-arounds
 - Fault handling – how quickly can the spacecraft recover

- **A new operational strategy**
 - Real time data transmission from Europa
 - Minimal data storage – feasible with current rad hard technology
 - Minor compromises in data types acquired
Galileo Radiation Failures vs Time in Orbit about Jupiter

Pre-decisional, for planning purposes only
Europa Explorer Concept

Probability that Actual Radiation Environment Seen is Below Selected Design Point

Pre-decisional, for planning purposes only
Europa Explorer – Operating Lifetime

Radiation Dose (Prime Mission = 1)

Galileo – End of Mission
700 krads
Europa Orbit Insertion
Europa Explorer – End of Mission?
360 day Extended Mission
225 day Extended Mission
90 day Prime Mission in Europa Orbit

Radiation Dose (Mrads)

Pre-decisional, for planning purposes only
Concept Comparison

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Europa Orbiter</th>
<th>Europa Geophysical Explorer</th>
<th>Europa Explorer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument Mass</td>
<td>27 kg</td>
<td>180 kg</td>
<td>180 kg</td>
</tr>
<tr>
<td>Instrument Power</td>
<td>27 W</td>
<td>154 W</td>
<td>100 W</td>
</tr>
<tr>
<td>(Orbital Average)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># Instruments</td>
<td>4</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Lander</td>
<td>Not Possible</td>
<td>850 kg</td>
<td>340 kg</td>
</tr>
<tr>
<td>Prime Mission</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td>30 Days</td>
<td>30 days</td>
<td>90 Days</td>
</tr>
<tr>
<td>Data Return</td>
<td>100 Gbits</td>
<td>1000 Gbits</td>
<td>3000 Gbits</td>
</tr>
<tr>
<td>Extended Mission</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td>0 Days</td>
<td>70 Days</td>
<td>135 Days</td>
</tr>
<tr>
<td>Data Return</td>
<td>N/A</td>
<td>2333 Gbits</td>
<td>4500 Gbits</td>
</tr>
<tr>
<td>(Assumes 24/7 DSN coverage)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Expect some degradation in performance

3/10/2006 Pre-decisional - for discussion purposes only
Summary

Europa Explorer Orbiter would

- be fully operational in Europa orbit for at least 90 days with significant data return expected for up to a year

- produce 1000 times more close-up observations of Europa as the Galileo mission performed in six years of flybys

- carry 180 kg of instruments (including shielding and contingency)

- have ~340 kg of unallocated mass that could be used for additional margin, an enhanced science payload, and/or a Europa lander

- return approximately ~3.0 Tbits of Europa data in first 90 days

- use existing technology

Europa Explorer - A Capable Mission - Now