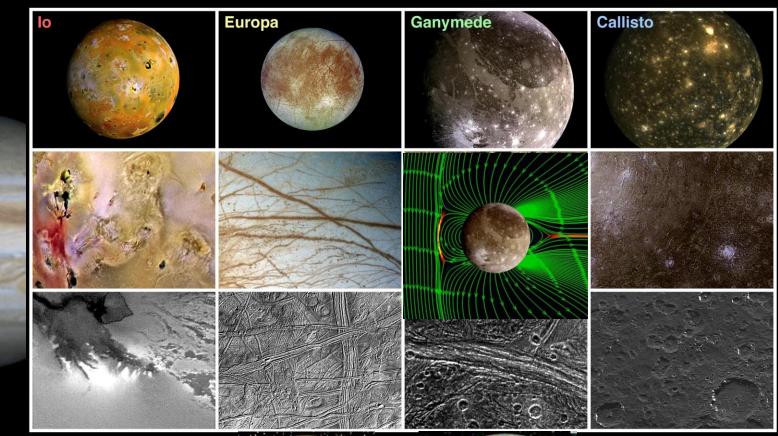
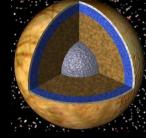
JUICE: MISSION OVERVIEW AND STUDY STATUS

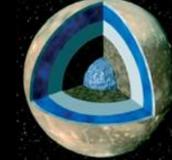
D. Títov, C. Erd JUICE Science Team ESA Study Team

JUICE artist impression (Credits ESA, AOES)

JUICE: JUpiter Icy moons Explorer

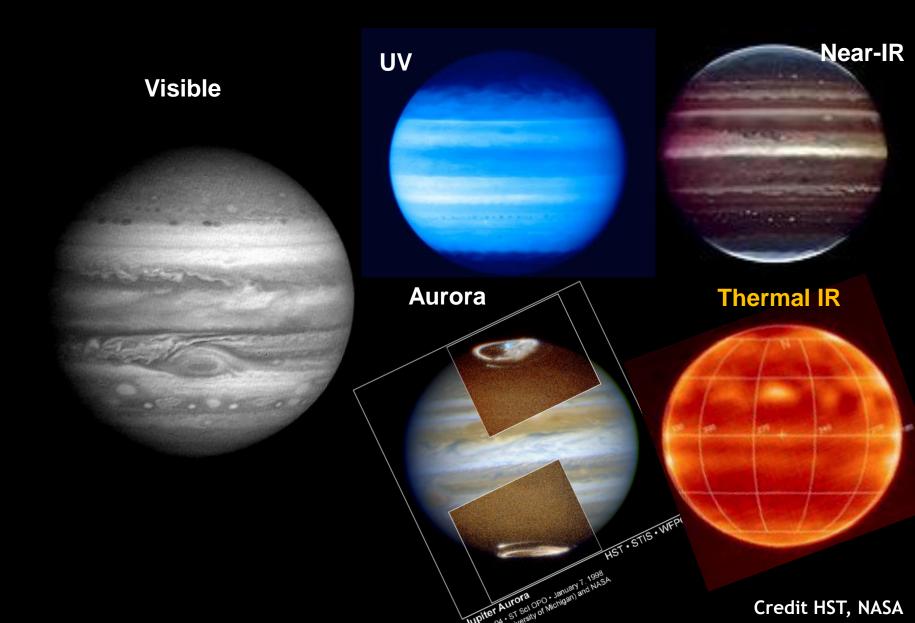

JUICE Science Themes

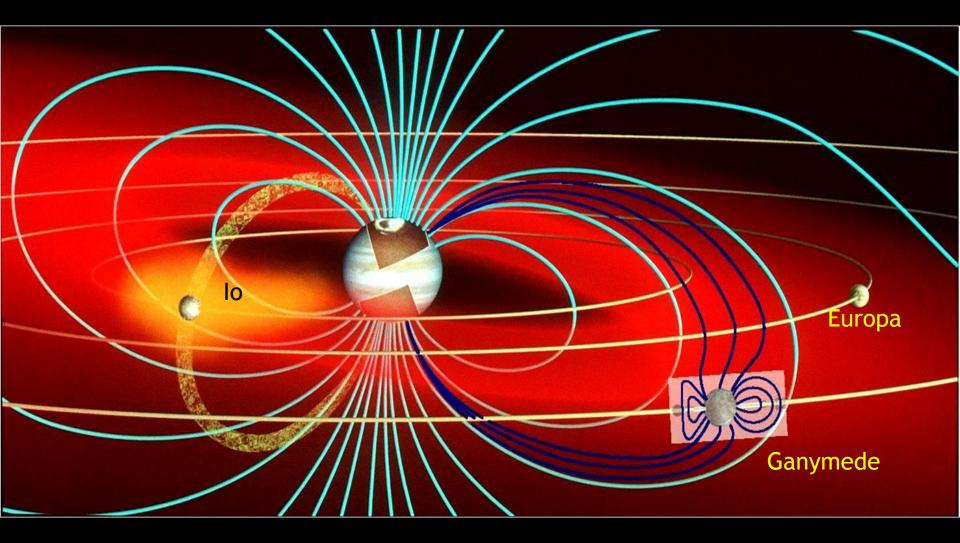

- Emergence of habitable worlds around gas giants
- Jupiter system as an archetype for gas giants


JUICE concept

- Single spacecraft mission to the Jovian system
- Investigations from orbit and flyby trajectories
- Synergistic and multi-disciplinary payload
- European mission with international participation

Jupiter family





Credit NASA

Jovian atmosphere

Jovian magnetosphere

JUICE Payload

Acronym	PI	LFA	Instrument type				
Remote Sensing Suite							
JANUS	P. Palumbo	Italy	Narrow Angle Camera				
MAJIS	Y. Langevin G. Piccioni	France Italy	Vis-near-IR imaging spectrometer				
UVS	R. Gladstone	USA	UV spectrograph				
SWI	P. Hartogh	Germany	Sub-mm wave instrument				
Geophysical Experiments							
GALA	H. Hussmann	Germany	Laser Altimeter				
RIME	L. Bruzzone	Italy	Ice Penetrating Radar				
3GM	L. Iess	Italy	Radio science experiment				
PRIDE	L. Gurvits	Netherlands	VLBI experiment				
Particles and Fields Investigations							
PEP	S. Barabash	Sweden	Plasma Environmental Package				
RPWI	JE. Wahlund	Sweden	Radio & plasma Wave Instrument				
J-MAG	M. Dougherty	UK	Magnetometer				

Payload: Remote sensing suite

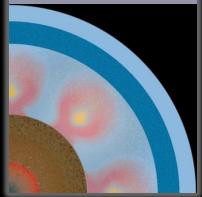
Acronym	Instrument type	Characteristics
JANUS	Imaging system	 350-1050 nm, 13 filters FOV: 1.72x1.29 ° 3 m/px at Ganymede (from 200 km orbit) 15 km/px at Jupiter (from Ganymede orbit)
MAJIS	Vis-near-IR imaging spectrometer	 0.4-5.7 μm, 3-7 nm resolution FOV: 3.4° 0.025km/px at Ganymede (from 200 km orbit) 125 km/px at Jupiter (from Ganymede orbit)
UVS	UV spectrograph	 55-210 nm, <0.6 nm resolution 0.5 km/px at Ganymede(200 km) 250 km/px at Jupiter
SWI	Sub-mm wave instrument	 530-601 GHz (500 μm) 10⁷ resolving power 30 cm antenna, 1-2 mrad resolution

Payload: Geophysical experiments

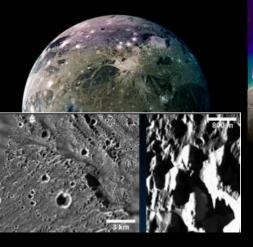
Acronym	Instrument type	Characteristics
GALA	Laser Altimeter	 30 & 75 shot frequency Resolution H/V: 10 m/ 0.1 m at Ganymede (200km)
RIME	Ice Penetrating Radar	 9 MHz (1&3 MHz band) 10 m antenna down to 9 km depth 30 m resolution in ice
3GM (USO+KaT)	Radio science experiment	 Gravity field up to degree 10 at Ganymede Structure of the Jupiter atmosphere 0.1-800 mbar
PRIDE	VLBI experiment	Lateral position of s/c with ~25 m accuracy

Payload: in-situ plasma & fields package

Acronym	Instrument type	Characteristics
PEP	Plasma Environmental Package	 6 sensors Neutrals, ions, electrons Energy range <0.001 eV to >1 MeV Composition with mass range 1-1000 amu and M/dM > 1100
RPWI	Radio & plasma Wave Instrument	 4 sensors E-field : DC - 45 MHz B-field : 0.1 Hz - 20 kHz Plasma properties: N_e, N_i, T_e, V_i Dust characterization (>1 µm)
J-MAG	Magnetometer	 Measurements rate 32 Hz, 128 Hz ±8000 nT @ 1 pT resolution ±50000 nT @ 6 pT resolution


Mission scenario overview

Launch	06.2022			
1. Interplanetary Transfer	7.6 years	Ganymede phases		
Jupiter Orbit Insertion	01.2030	6. Elliptic #1	30 days	
Jupiter Orbit Insertion	01.2030	7. High altitude (5000 km)	90 days	
2. Jupiter equatorial phase #1	~11 mon	8. Elliptic #2	30 days	
		9. Circular (500 km)	102 days	
3. Two Europa flybys	36 days	10. Circular (200 km)	30 days	
4. Jupiter high-latitude phase	260 days			
including Callisto flybys		Total mission duration	11 years	
5. Jupiter equatorial phase #2	~11 mon			


	JC				1		1			
Perijoves			\sim	~^^^						
Callisto			2	<u>^ ^^^^ / / / / / / / / / / / / / / / / </u>						
Ganymede										
			1							
Europa			\sim							
JUICE phase		2	3	4 5		6-8		9	10	
Year	2()30	20	031		2032	203	3		

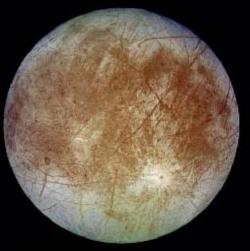
Ganymede: planetary object and potential habitat

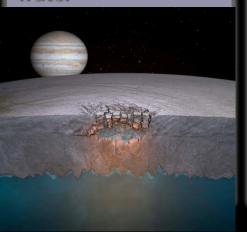
lce shell, ocean, deeper interiors

Geology, surface composition

Atmosphere,

Magnetosphere, plasma environment


- Imaging: global ~400 m/px, selected targets ~3 m/px
- Mineralogical mapping (especially of non-ice materials): globally 1-5 km/px , selected targets ~25 m/px
- > Thickness of the icy crust, ocean depth and conductivity
- Sub-surface sounding down to ~9 km depth
- Composition and dynamics of the atmosphere
- Magnetosphere, plasma environment, and interaction with the surface and the Jovian magnetosphere



Europa: study of recently active regions

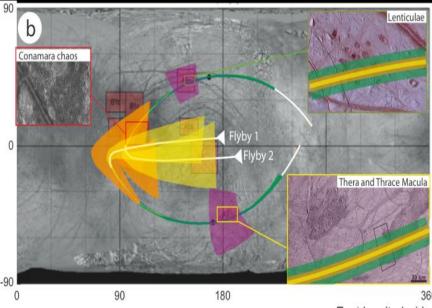
Composition of nonice material

Liquid sub-surface water



Active processes

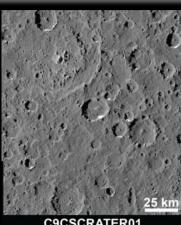
Atmosphere, ionosphere



Credit NASA

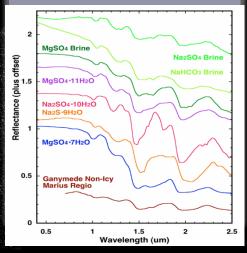
Main investigations

- Non-ice materials in selected sites mapped at regional (>5km/px) and local (<500 km/px) scales</p>
- Context imaging (< 500 m/px)</p>
- Search for liquid water in the shallow (few km) subsurface
- Processes in active sites
- Atmosphere and plasma environment


Geometry of two baseline Europa flybys

Callisto: a witness of the early Solar System

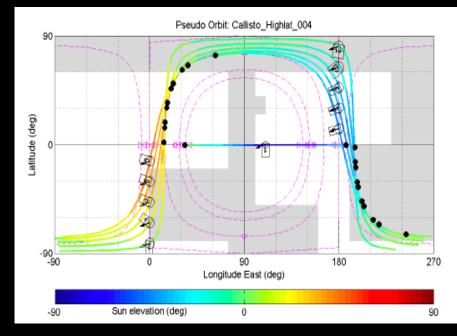
Geological history and past activity



Credit NASA

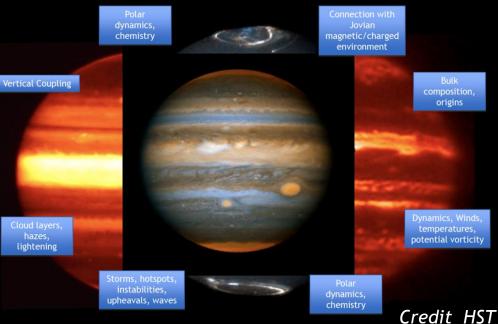
C9CSCRATER01 150 m/pxl

Outer shell including ocean


Non-ice material

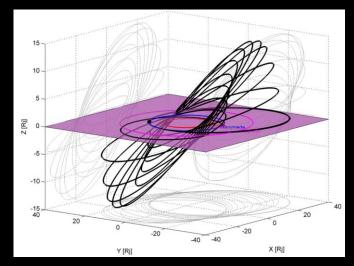
Geometry of the baseline Callisto flybys

Main investigations

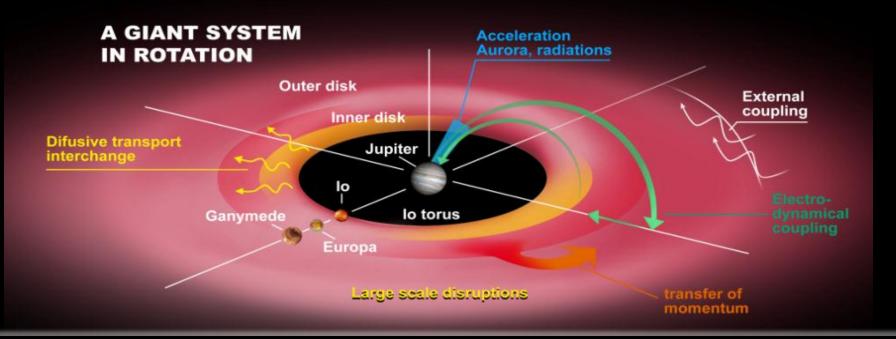

- Medium resolution imaging (<400m/px)</p>
- Regional mineralogical mapping (~5km/px)
- Outer shell including the ocean
- Subsurface down to few km
- Exosphere and weathering processes

Jupiter atmosphere

- Atmospheric structure, composition and dynamics
- Coupling between troposphere, stratosphere and thermosphere



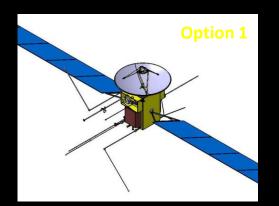
Main investigations

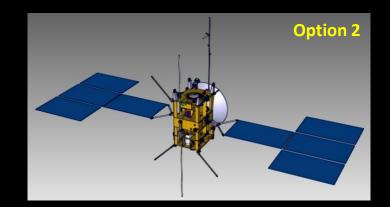

- Multi-wavelength observations from UV to sub-mm
- Imaging ~15 km/px, spectro-imaging 100-200 km/px
- > Complete latitude, phase angle, local time coverage
- Repeated observations with time scales from hours to months
- Extended period of time (3 years in total)

High-inclination trajectories

Jupiter magnetosphere

- Magnetosphere as a fast rotator
- > Magnetosphere as a giant particle accelerator
- > Interaction of the Jovian magnetosphere with the moons
- > Moons as sources and sinks of magnetospheric plasma

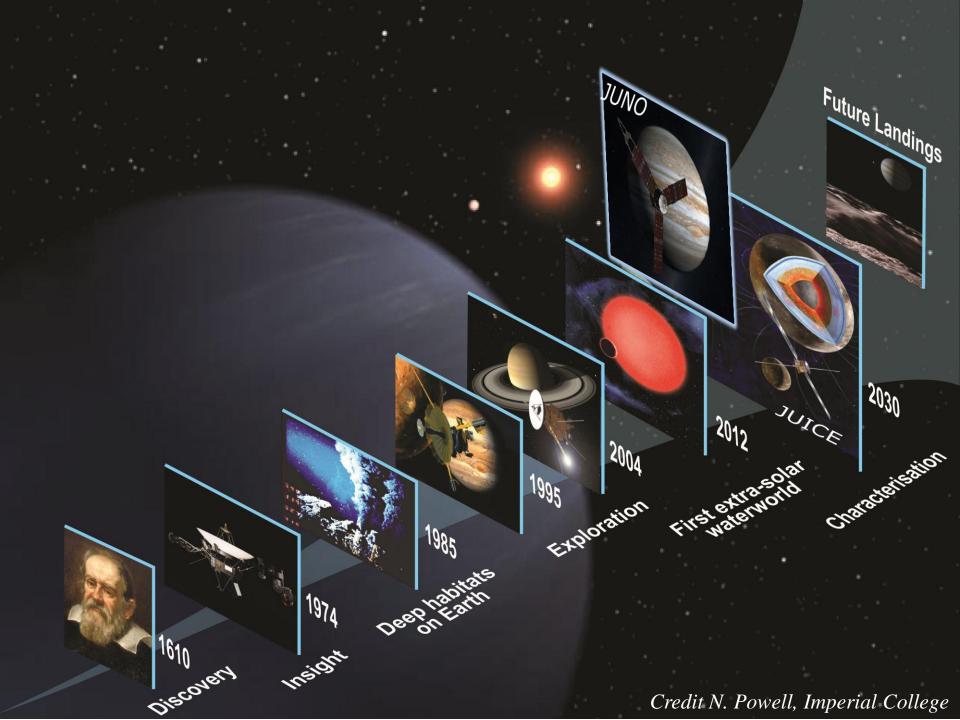



Main investigations

- Equatorial magnetosphere at R ~ 10 30 R_J and out to at least 100 R_J
- High-inclination orbit (up to at least 30°)
- Simultaneous remote sensing and in-situ observations

Main features of the spacecraft design (end of assessment phase)

- Dry mass ~1900 kg, propellant mass ~2900 kg
- High Δv required: 2600 m/s
- Payload ~105 kg, ~ 150 W
- 3-axis stabilized s/c
- Power: solar array ~ 80 m², ~ 800 W
- HGA: >3 m, fixed to body, X & Ka-band
- Data return >1.4 Gb per day


- **1.** JUICE is in the middle of the Definition Phase (A/B1)
- **2. 11 experiments are selected**
- **3.** Two industrial contractors
- 4. Preliminary Requirements Review (December 2013 April 2014)
 - Verify definition, completeness, and flow down of science requirements
 - Confirm the feasibility of the proposed spacecraft and mission implementation
 - Verify the preliminary instruments and external spacecraft interfaces
 - Review the science operations concept and the ground segment design
 - Verify that the planning, schedule, and costs are realistic
 - etc
- **5.** Planned future work
 - System requirements review (August-September 2014)
 - Mission adoption (November 2014)
 - Selection of industrial contractor (mid-2015)

European Space Agency

• Start of the implementation phase (end 2015)

Conclusions

- ESA-led mission with broad international participation to the outer Solar system
- First orbiter of an icy moon
- Highly capable spacecraft with synergistic and multi-disciplinary payload
- Detailed study of two classes of planetary objects
 - a gas giant
 - an icy moon
- Comparative study of the icy moons family
- Investigations of two classes of planetary atmospheres
 - well developed atmosphere of the gas giant
 - tenuous exospheres of the icy moons
- Magnetosphere and plasma environment of the gas giant and its interaction with its moons
- Couplings within the Jovian system

