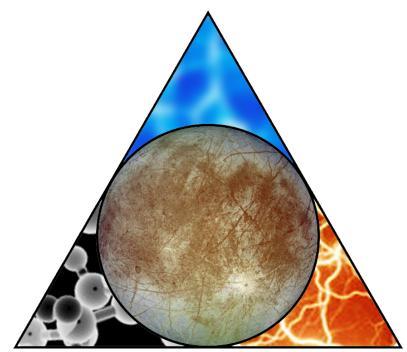

Europa Study Update


OPAG meeting, Pasadena, CA 10/19/2011

10/19/11

Copyright 2011 California Institute of Technology. Government sponsorship acknowledged. **Pre-Decisional — For Planning and Discussion Purposes Only**

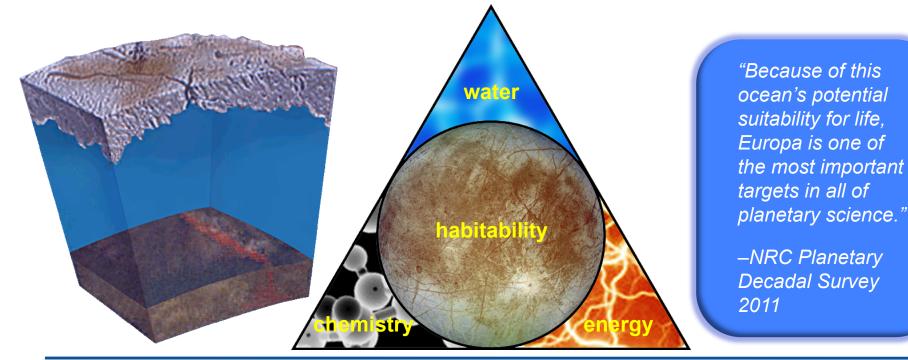
Science Bob Pappalardo Europa Study Scientist and SDT Chair


OPAG meeting, Pasadena, CA 10/19/2011

10/19/11

Copyright 2011 California Institute of Technology. Government sponsorship acknowledged. **Pre-Decisional — For Planning and Discussion Purposes Only**

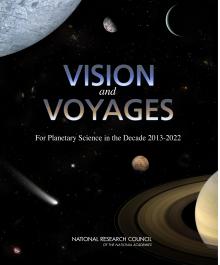
10/19/11



- Three "ingredients" necessary for life:
 - Water: Solvent to facilitate chemical reactions
 - Chemistry: Constituents to build organic molecules

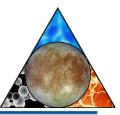
Copyright 2011 California Institute of Technology. Government sponsorship acknowledged.

Pre-Decisional — For Planning and Discussion Purposes Only


- Energy: Disequilibrium to drive metabolism

Decadal Survey Recommendations

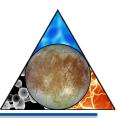
- JEO is "**second highest priority Flagship** mission" relative to MAX-C, based on "**pragmatic reasons** associated with the required spending profiles."
- JEO's "cost as currently designed is so high that **both a decrease in mission scope** and an **increase in NASA's planetary budget** are necessary to make it affordable."
- "Possible pathways to lower cost include use of a larger launch vehicle that would reduce cost risk by shortening and simplifying the mission design, and a significant reduction in the science payload. Other possible descopes were listed in section 4.1.5 of the 2008 JEO mission study final report."



4

- For plutonium savings, switch from MMRTG to ASRGs
- MAX-C was chosen over JEO foremost "to maintain programmatic balance by assuring that no one mission takes up too large a fraction of the planetary budget at any given time."

10/19/11 Copyright 2011 California Institute of Technology. Government sponsorship acknowledged. *Pre-Decisional — For Planning and Discussion Purposes Only*



- To achieve the highest priority JEO Europa science objectives, invoke a two-element approach
 - <u>Orbiter element</u> to perform geophysical measurements ("Ocean" science) which can only be achieved from Europa orbit
 - <u>Multiple-flyby element</u> to perform remote measurements ("Chemistry" and "Energy" science) which can be achieved from Jupiter orbit
- Each achieves key science objectives, and each has very high science value of its own
 - Neither science nor element cost (~\$1.5B FY15) is a clear discriminator between elements
- The complementary elements would fly separately, and staggered in time
 - Anticipate the second element would be presented to the next Decadal Survey for consideration
- A landed element is now being studied by the Europa SDT at NASA's request

10/19/11

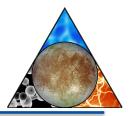
Europa Science Definition Team

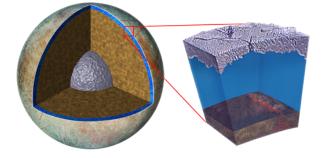
- Fran Bagenal
- Amy Barr
- Bruce Bills
- Diana Blaney
- Don Blankenship
- Will Brinckerhoff*
- Jack Connerney
- Kevin Hand*
- Tori Hoehler*
- Bill Kurth
- Melissa McGrath
- Mike Mellon*
- Jeff Moore
- Bob Pappalardo
- Louise Prockter
- Dave Senske
- Everett Shock*
- David Smith

Univ. Colorado SwRI JPL JPL Univ. Texas GSFC **GSFC** JPI Ames Univ. Iowa **MSFC** Univ. Colorado Ames JPL API JPI ASU MIT

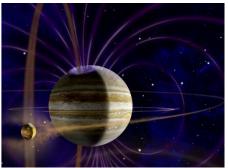
Plasma Geophysics Geophysics Composition Ice shell Astrobiology Magnetometry Astrobiology Astrobiology Plasma **Atmosphere Ice Physics** Geology Chair / Study Scientist Deputy / Geology **Deputy / Geology** Geochemistry Geophysics

*Recent SDT augmentations




- May 2–3, 2011, JPL
 - Considered Europa objectives and mission design trades, and converged on two-element mission concept
- June 23–24, 2011, JPL
 - Provided feedback on initial orbiter and flyby mission designs, and iterated on model payload and mission requirements
- Aug. 22–23, 2011, JPL
 - Finalized science traceability, model payloads, and mission requirements
- Oct. 17–18, 2011, JPL
 - Developed initial objectives and investigations for a landed element
- Upcoming: Nov. 29–30, 2011, Boulder, Colo.
 - Will develop lander element model payload and associated mission requirements

Reduced from EJSM-JEO to a Europa-Only Focus



 Europa: Explore Europa to investigate its habitability

- 2. Ganymede: Characterize Ganymede as a planetary object including its potential habitability
- 3. Jupiter System: Explore the Jupiter system as an archetype for gas giants

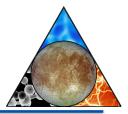
8


10/19/11

- *Goal:* Explore Europa to investigate its habitability
- Objectives:

Themes:

- Ocean: Characterize the extent of the ocean and its relation to the deeper interior
- Ice Shell: Characterize the ice shell and any subsurface water, including their heterogeneity, and the nature of surface-ice-ocean exchange
- Composition: Understand the habitability of Europa's ocean through composition and chemistry



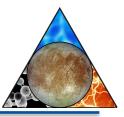
9

 Geology: Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities

Science as a Driver of Mission Architecture

Science traceability leads to a <u>two element</u> mission concept:

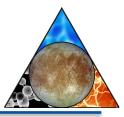
Orbiter Element:


Geophysical measurements that can be achieved only from <u>orbit</u>

- Science focused primarily to address "Ocean" objective:
 - Gravity field
 - Tidal amplitude
 - Induction signatures
 - Plasma correction
 - Stratigraphic mapping

- Flyby Element: Remote measurements that can be accomplished via <u>multiple</u> flybys
- Science focused primarily to address "Chemistry" and "Energy" themes:
 - Subsurface dielectric horizons
 - Surface constituents
 - Atmospheric constituents
 - Targeted landforms
- Each element achieves key Europa science objectives
- The elements are complementary, and each has very high science value of its own

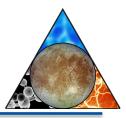
Two-Element Approach


Objective	Europa Science	Orbiter	Multiple Flyby
Ocean	Gravity field	1	
	Tidal amplitude	1	
	Induction signatures	1	
	Plasma correction	1	
Ice Shell	Subsurface dielectric horizons		1
Composition	Surface constituents		1
	Atm. constituents		1
Geology	Stratigraphic mapping	1	
	Targeted landforms		1

10/19/11

Orbiter Element Traceability

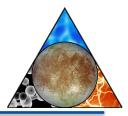
Ocean Emphasis


Goal		Obiostivo	Investigation	Model Instruments	Theme		
Goal	J		Investigation	Model Instruments	W	С	E
tability		Characterize the extent of the ocean	O.1 Determine the amplitude and phase of gravitational tides.	Radio subsystem, Laser altimeter	✓		
		and its relation to the deeper interior.	O.2 Determine Europa's magnetic induction response.	Magnetometer, Langmuir probe	✓		
s hab	Ocean		O.3 Determine the amplitude and phase of topographic tides.	Laser altimeter, Radio subsystem	\		
ate its	Oc		O.4 Determine Europa's rotation state.	Laser altimeter, Mapping camera	√		
investiga			O.5 Investigate the deeper interior.	Radio subsystem, Laser altimeter, Magnetometer, Langmuir probe	1		~
Explore Europa to investigate its habitability	ology	Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest	characteristics of magmatic, tectonic, and impact landforms.	Mapping camera, Laser altimeter	1		•
	19/11	localities. Copyright 2011	California Institute of Technology. Governm			12)

Pre-Decisional — For Planning and Discussion Purposes Only

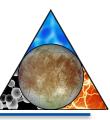
Flyby Element Traceability

Chemistry & Energy Emphasis


					Madal Instru	Theme		
Goal				Investigation	Model Instr.	W	С	E
y		Characterize the ice shell and any subsurface		Characterize the distribution of any shallow sub- surface water and the structure of the icy shell.	Radar sounder, Topo. Imager	<		1
Explore Europa to investigate its habitability Teology Commosition Ice Shell	llər	water, including their heterogeneity, and the		Search for an ice-ocean interface.	Radar sounder, Topo. Imager	✓		1
	Ice SI	nature of surface-ice- ocean exchange.		Correlate surface features and subsurface struc- ture to investigate processes governing material exchange among the surface, ice shell, and ocean.	Radar sounder, IR spectrometer, Topo. imager	<	1	1
ate it				Characterize regional and global heat flow variations.	Radar sounder	<		1
nvestig	ition	habitability of Europa's ocean through		Characterize the composition and chemistry of the Europa ocean as expressed on the surface and in the atmosphere.	IR spectrometer, INMS	~	1	
a to ii	\sim	composition and chemistry.		Determine the role of Jupiter's radiation environ- ment in processing materials on Europa.	IR spectrometer, INMS		1	1
lrope	Co			Characterize the chemical and compositional pathway's in Europa's ocean.	IR spectrometer, INMS	<	1	
xplore Eu	00.	Understand the forma- tion of surface features, including sites of recent or current activity, and		Determine sites of most recent geological activity, and characterize high science interest localities.	Topo. Imager	~		~
	Ğ	characterize high science interest localities.		Themes: W= Water, C = Chemistry, H			15	

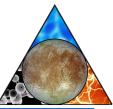
Copyright 2011 California Institute of Technology. Government sponsorship acknowledged.

Pre-Decisional — For Planning and Discussion Purposes Only

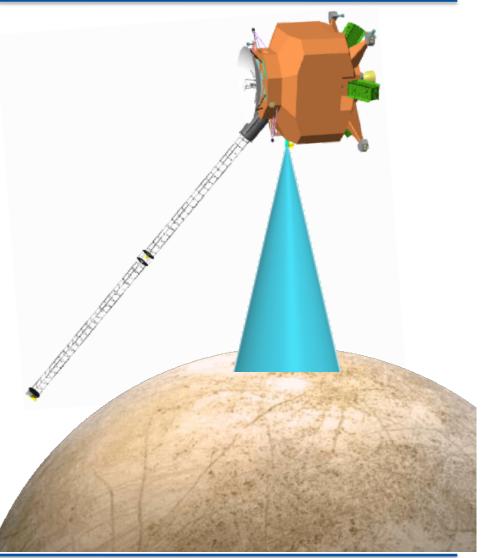


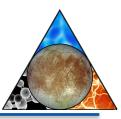
Goal	Objective	Investigation	Measurement	Example instrument	Mission constraints/ requirements	Notional Instrument Specifications	Notional Mission Type
investigate	the ocean and its	the amplitude and phase of gravitational tides.	two time	-	circular, near-polar (within 5° to		Orbiter

Key Science Drivers & Requirements

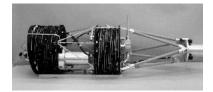

Instrument(s)	Key Accommodation Requirements	Element	
Radio Subsystem + Laser Altimeter	Low altitude (~100+ km), circular, near-polar orbit, for at least 30 days. Unperturbed orbital arcs (no thrusting) of at least 3 days.	Orbiter	
Magnetometer + Langmuir Probe	Low altitude (~100+ km), circular, near-polar orbit, for at least 30 days. Cover approximately 12 hours of Europa local time.	Orbiter	
Mapping Camera	Low altitude (~100+ km), ≥ 80% global coverage under near uniform lighting conditions, solar incidence angle > 45° (70° preferred).	Orbiter	
Ice Penetrating Radar	≥ 800 km tracks in 11 of 14 globally distributed regions, intersected by at least 1 other track, with track lengths measured from ≤ 400 km alt. ~25–100 km closest approach at ≤ 6 km/s.	Flyby	
ShortWave IR Spectrometer	≥ 70% coverage at ≤ 10 km per pixel. Ability to target specific geologic locations with a wide range of surface locations, lighting between 9:00am and 3:00pm. Attitude stability < ½ IFOV over integration time, flyby speed < 6 km/s.	Flyby	
Topographical Imager	High resolution stereo imagery aligned with IPR coverage; lighting conditions solar incidence angle > 20° (70° preferred).	Flyby	
Ion and Neutral Mass Spectrometer	Low altitude (< 200 km with lower altitudes desired) at \leq 7 km/s; long integration times and low altitudes (\leq 100 km) preferred.	Flyby	

10/19/11


Copyright 2011 California Institute of Technology. Government sponsorship acknowledged. **Pre-Decisional — For Planning and Discussion Purposes Only**


Orbiter Model Payload: Outline

- Model payload instruments
 - Radio Subsystem (RS)
 - Laser Altimeter (LA)
 - Magnetometer (MAG)
 - Langmuir Probe (LP)
 - Mapping Camera (MC)
- Science operations concept
- Example coverage



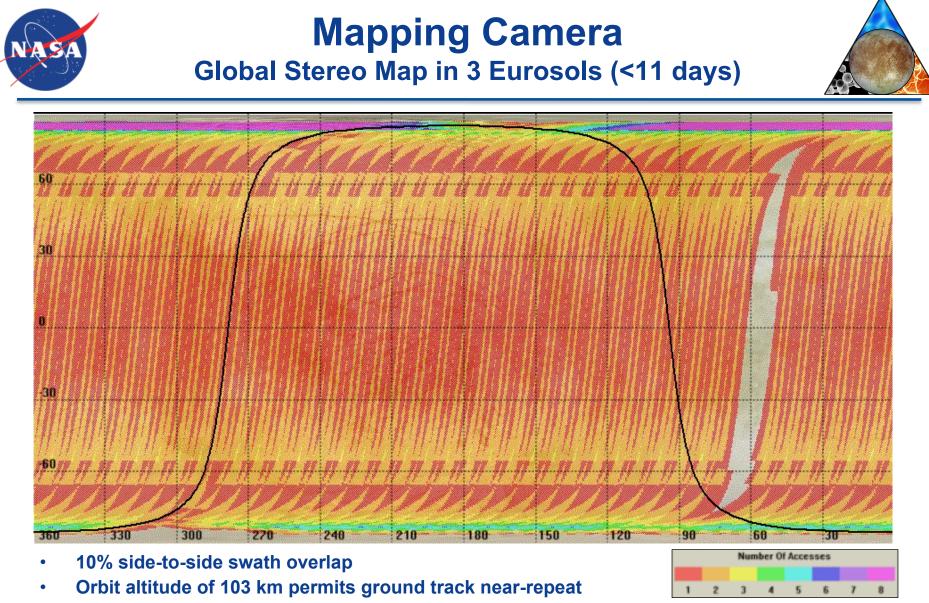
- Radio Subsystem (RS)
 - X-band up and down; Ka-band down only
 - Ka Transponder
- Laser Altimeter (LA)
 - Nadir view, co-boresighted with camera on 2-axis gimbal platform
- Magnetometer (MAG)
 - Dual 3-axis fluxgate
 - Sensors on boom 5 m and 10 m from S/C
- Langmuir Probe (LP)
 - Two 5 cm diameter spheres mounted on 1 m long booms pointed > 90° from each other
- Mapping Camera (MC)
 - Pushbroom imager; 1024 pixel CMOS or CCD line array
 - 5 separate line arrays in focal plane (radiation shielded)
 - 4 nadir viewing: panchromatic + 3 color bands (color for E/PO)
 - 1 panchromatic viewing ~40° forward or aft for stereo
 - Nadir view, co-boresighted with LA on 2-axis gimbal platform

Similar instruments

NEAR NLR

Galileo MAG

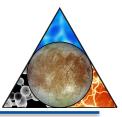
Rosetta LAP



MPL/MSL MARDI

To Earth **Gravity Science** while not occulted (Earth-pointed HGA) Magnetometer and **Langmuir Probe** on all the time To Earth MC Day Night ΙΔ Laser Altimeter on all the time (2 axis scan platform) Mapping Camera on during day with ~45% duty cycle (2 axis scan platform) To Earth

Copyright 2011 California Institute of Technology. Government sponsorship acknowledged. **Pre-Decisional — For Planning and Discussion Purposes Only**

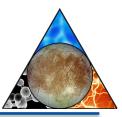


- 1024-pixel line width ~100 m/pixel average resolution across FOV
- Wide gap is due to Jupiter occultation; It could be filled through off-nadir pointing

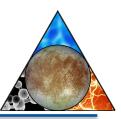


Laser Altimeter Nadir Track

Each color is 1 eurosol (3.55 days)

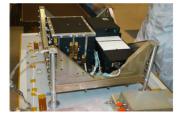

20

10/19/11 Copyright 2011 California Institute of Technology. Government sponsorship acknowledged. *Pre-Decisional — For Planning and Discussion Purposes Only*


Flyby Model Payload: Outline

- Model payload instruments
 - Ice Penetrating Radar (IPR)
 - ShortWave InfraRed Spectrometer (SWIRS)
 - Topographical Imager (TI)
 - Ion and Neutral Mass Spectrometer (INMS)
- Science operations concept
- Example coverage

Flyby Model Payload Instruments

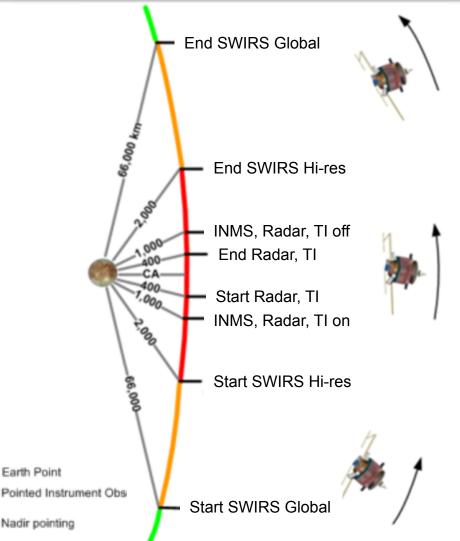


- Ice Penetrating Radar (IPR)
 - Dual-frequency sounder
 - 60 MHz with 10 MHz bandwidth (shallow)
 - 9 MHz with 1 MHz bandwidth (deep)
 - Deployed dipole antenna array on 15 m boom
- ShortWave InfraRed Spectrometer (SWIRS)
 - Spectral Range 0.85 5.0 µm; Spectral Resolution 10 nm
 - Single optic, single grating spectrometer & HgCdTe detector
 - Scan mirror for Target Motion Compensation
- Topographical Imager (TI)
 - Pushbroom, 4096 pixels width
 - Stereo obtained through along-track overlap
- Ion and Neutral Mass Spectrometer (INMS)

New Horizons Ralph/MVIC

Similar instruments

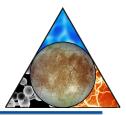
LRO M³

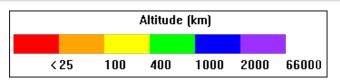


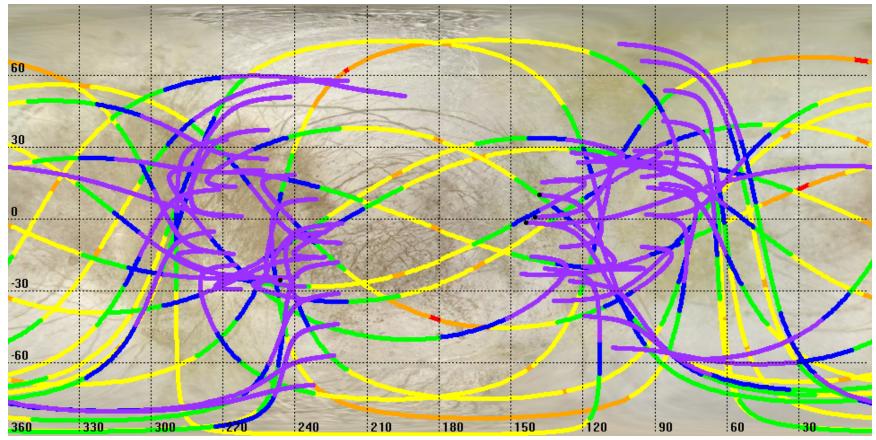
Cassini INMS

Mass Range 1 – 300 Da; Mass Resolution > 500; Sensitivity 10 particles/cm³

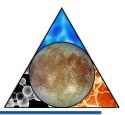
- Ice Penetrating Radar obtains primary data at ≤ 400 km
- ShortWave InfraRed Spectrometer obtains data ≤ 66,000 km
- Topographical Imager obtains stereo images ≤ 1,000 km
- INMS obtains data ≤ 1,000 km, including several ~25 km flybys

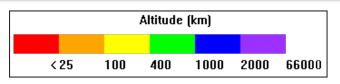


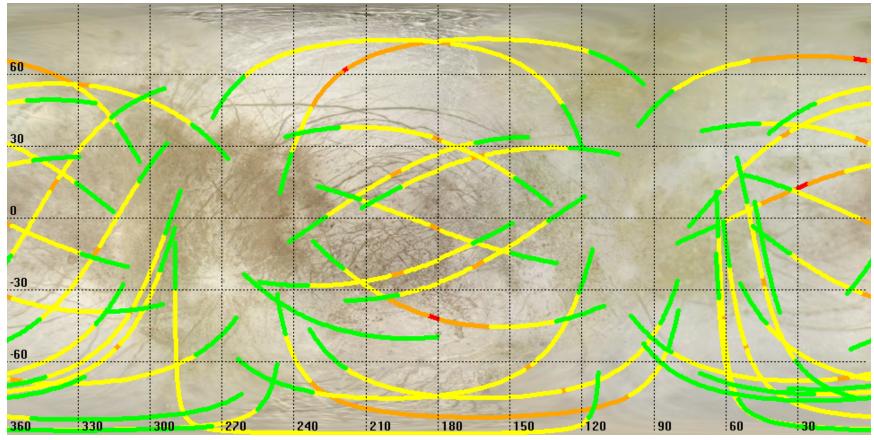

10/19/11


Copyright 2011 California Institute of Technology. Government sponsorship acknowledged. 23 **Pre-Decisional — For Planning and Discussion Purposes Only**

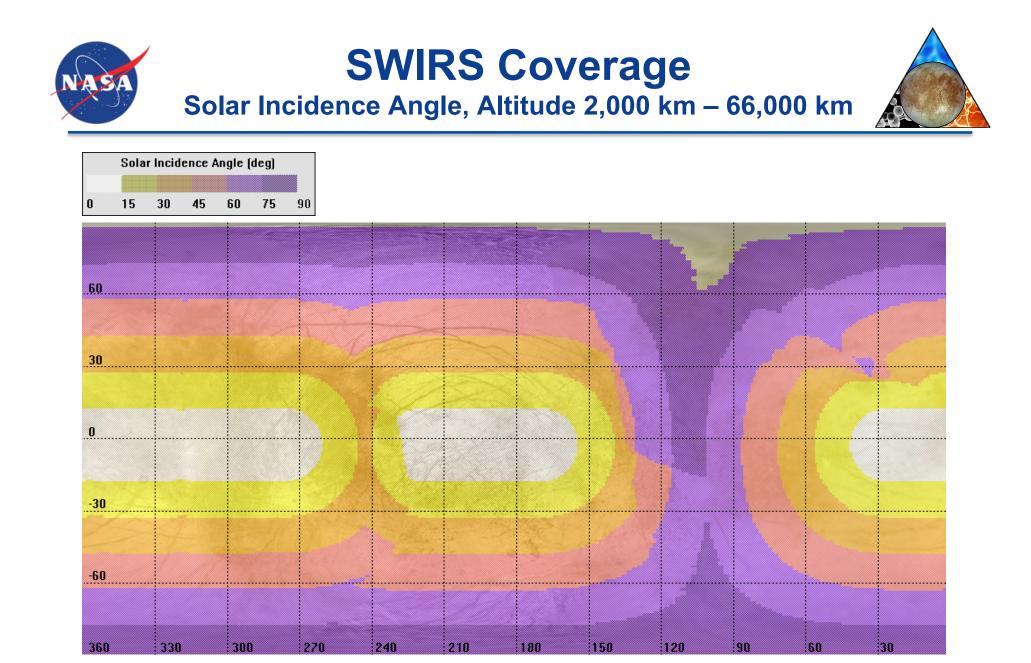
Flyby Ground Tracks Altitude 25 km – 66,000 km




10/19/11

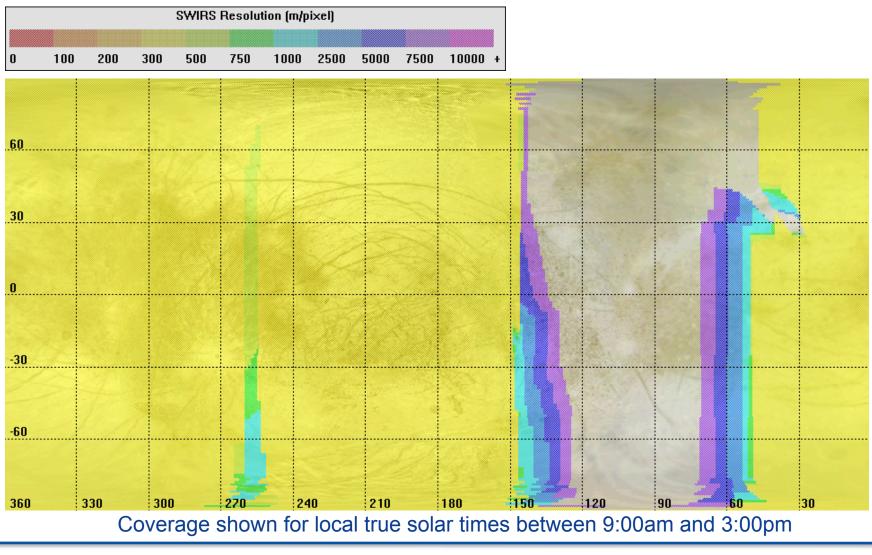

Copyright 2011 California Institute of Technology. Government sponsorship acknowledged. **Pre-Decisional — For Planning and Discussion Purposes Only**

Flyby Ground Tracks Altitude < 1,000 km



10/19/11

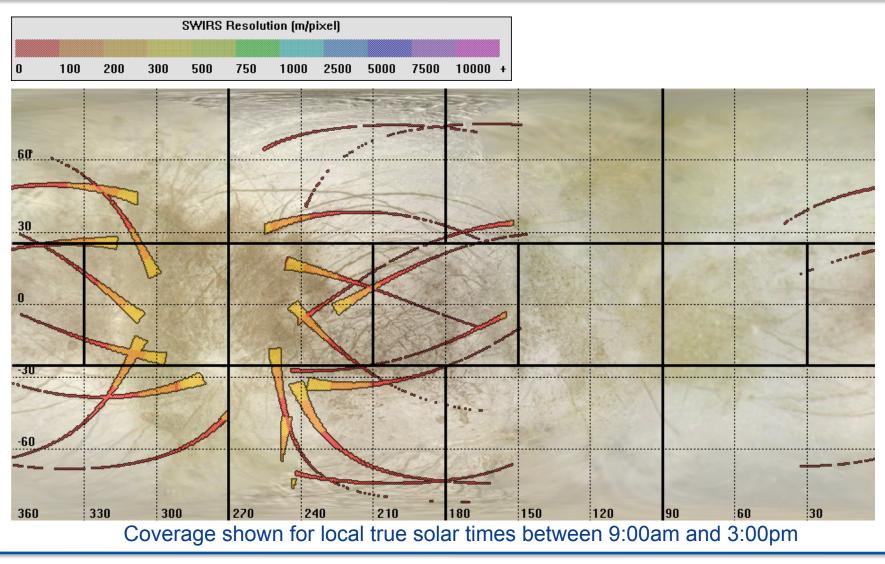
Copyright 2011 California Institute of Technology. Government sponsorship acknowledged. **Pre-Decisional — For Planning and Discussion Purposes Only**


10/19/11

Copyright 2011 California Institute of Technology. Government sponsorship acknowledged. **Pre-Decisional — For Planning and Discussion Purposes Only**

SWIRS Low Resolution Coverage

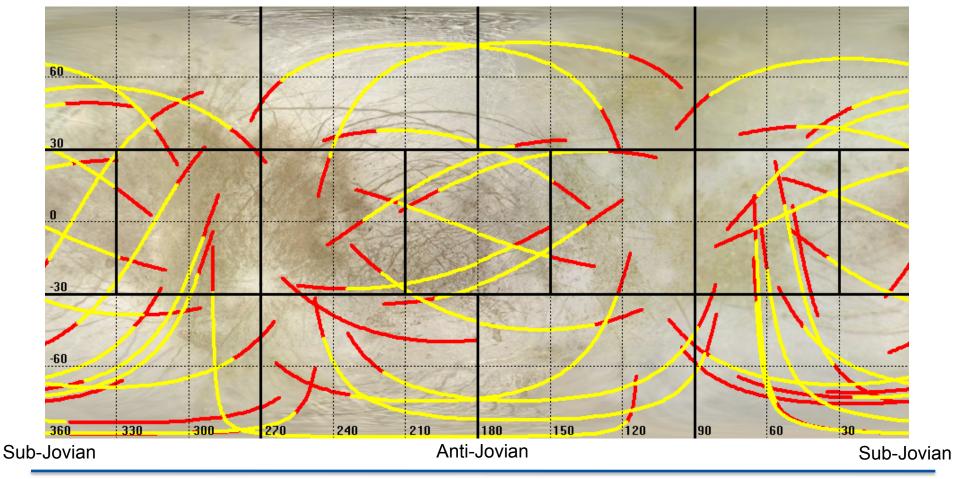
Altitude 2,000 km – 66,000 km



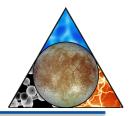
 10/19/11
 Copyright 2011 California Institute of Technology. Government sponsorship acknowledged.
 27

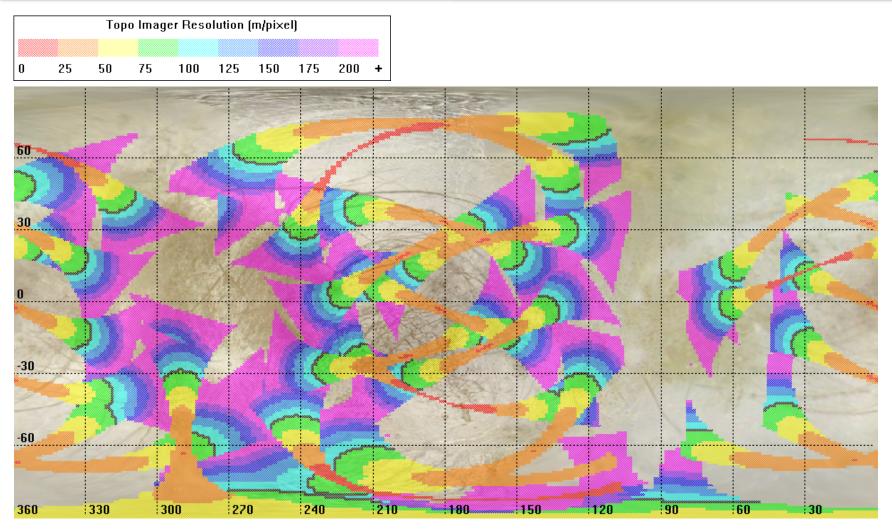
 Pre-Decisional — For Planning and Discussion Purposes Only
 27

SWIRS High Resolution Coverage Altitude ≤ 2,000 km


10/19/11 Copyright 2011 California Institute of Technology. Government sponsorship acknowledged. 28 **Pre-Decisional — For Planning and Discussion Purposes Only**

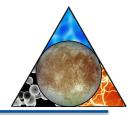
IPR Ground Coverage

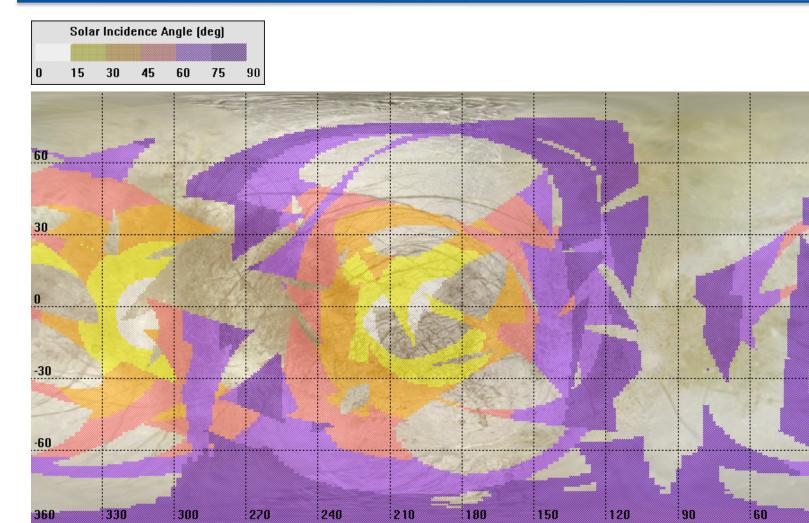



10/19/11

Copyright 2011 California Institute of Technology. Government sponsorship acknowledged. **Pre-Decisional — For Planning and Discussion Purposes Only**

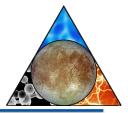
Topo Imager Coverage Resolution for Altitude ≤ 1,000 km


10/19/11


Copyright 2011 California Institute of Technology. Government sponsorship acknowledged. **Pre-Decisional — For Planning and Discussion Purposes Only**

Topo Imager Coverage

Solar Incidence Angle for Altitude ≤ 1,000 km


10/19/11

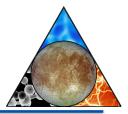
Copyright 2011 California Institute of Technology. Government sponsorship acknowledged. **Pre-Decisional — For Planning and Discussion Purposes Only**

31

Science as a Driver of Mission Architecture

Science traceability leads to a <u>two element</u> mission concept:

Orbiter Element:


Geophysical measurements that can be achieved only from <u>orbit</u>

- Science focused primarily to address "Ocean" objective:
 - Gravity field
 - Tidal amplitude
 - Induction signatures
 - Plasma correction
 - Stratigraphic mapping

- Flyby Element: Remote measurements that can be accomplished via <u>multiple</u> flybys
- Science focused primarily to address "Chemistry" and "Energy" themes:
 - Subsurface dielectric horizons
 - Surface constituents
 - Atmospheric constituents
 - Targeted landforms

Science as a Driver of Mission Architecture

Science traceability leads to a <u>two element</u> mission concept:

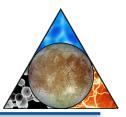
Orbiter Element:

Geophysical measurements that can be achieved only from <u>orbit</u>

- Payload focused primarily to address "Ocean" objective:
 - Radio Subsystem (RS)
 - Laser Altimeter (LA)
 - Magnetometer (MAG)
 - Langmuir Probe (LP)
 - Mapping Camera (MC)
- Have readily accommodated those instruments that are:
 - Less massive
 - Lower power
 - Lower data rate

- Flyby Element: Remote measurements that can be accomplished via <u>multiple</u> flybys
- Payload focused primarily to address "Chemistry" and "Energy" themes:
 - Ice Penetrating Radar (IPR)
 - ShortWave IR Spectrometer (SWIRS)
 - Ion and Neutral Mass Spectrometer (INMS)
 - Topographical Imager (TI)
- Have readily accommodated those instruments that are:
 - More massive
 - Higher power
 - Higher data rate

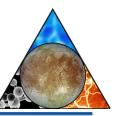
A Pragmatic Path to Europa Exploration



- Pragmatic two-element architecture would fulfill the highest-priority Europa science objectives
 - Orbiter element concentrates on the "Ocean" objective
 - Multiple-flyby element concentrates on the "Chemistry" and "Energy" themes
- Each element has very high science value on its own
- Directly responsive to Decadal Survey's recommendation for Europa
- Scientific priorities drive the architecture, permitting low-cost Europa mission options

10/19/11

Copyright 2011 California Institute of Technology. Government sponsorship acknowledged. **Pre-Decisional — For Planning and Discussion Purposes Only**



Backup Slides: Science

10/19/11

Europa Exploration Addresses Decadal Survey Themes

Decadal Survey Theme and Key Questions:			Building New Worlds	W Habitats		Workings of Solar Systems	
/ =	good	$\mathbf{A}, \mathbf{\sqrt{I}} = \text{very good}, \mathbf{\sqrt{I}} = \text{excellent}$	Q2: Planet and satellite	Q4: Organic	Q6:	Q10: Solar system	
Goal Europa Objective			accretion and migration	sources and synthesis	Modern habitats and life	processes and evolution	
igate	Ocean	Characterize the extent of the ocean and its relation to the deeper interior.	1	55	\ \\	<i>」」」</i>	
Explore Europa to investigate its habitability	Ice Shell	Characterize the ice shell and any subsurface water, including their heterogeneity, and the nature of surface-ice-ocean exchange.		J J	J	<i>」</i>	
	Comp'tn	Understand the habitability of Europa's ocean through composition and chemistry.	1	\ \\	J	<i>」</i>	
	Geology	Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities.		J J	J	<i>」」」</i>	

10/19/11

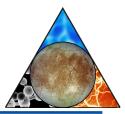
Copyright 2011 California Institute of Technology. Government sponsorship acknowledged. **Pre-Decisional — For Planning and Discussion Purposes Only**

Europa Science Definition Team

Subgroup Structure

Objectives subgroups:

- Ocean & Ice:
 - Bills, Barr, Blankenship*, Connerney, Senske, Smith
- Composition:
 - Blaney, Bagenal, Hoehler, Hand, Shock*, Brinckerhoff, Vance
- Geology:
 - **Moore**, Kurth, McGrath, Mellon, Patterson, Prockter*


Cross-Cutting subgroups:

- Astrobiology:
 - Hoehler, Blankenship, Hand*, McGrath, Senske, Shock
- Instrumentation:
 - Mellon, Bills, Blaney, Brinckerhoff*, Connerney, Kurth
- Landing Sites:
 - Prockter, Bagenal, Barr*, Moore, Patterson, Smith, Vance

Bold = Lead; * = Deputy Lead

Orbiter: Laser Altimeter (LA)

Primary Science Investigations

 Europa global topography and tidal deformation, rotation state, landform topography

Measurement Requirements

- Topographic differences to 1 m vertical accuracy at globally distributed crossover points at varying Europa orbital phases; implies surface ranging to 10 cm accuracy
- Simultaneous ranging with stereo imagery desired
- Near-polar near-circular orbit at \leq 200 km altitude

Configuration for Model Payload

- Time-of-flight rangefinder
- Transmits 2.7 mJ pulses at 1.064 μm
- 50 m laser spot from 100 km altitude
- Receiver telescope aperture of 12.5 cm diameter provides good SNR from 100 km altitude
- Avalanche photodiode detector (radiation shielded)
- 26 Hz pulse rate yields 50 m spot spacing
- Nadir view co-boresighted with camera; minimize thruster contamination
- Mounted on 2-axis gimbal platform (assuming simultaneous ranging and downlink over fixed-mounted HGA from mid-afternoon orbit)


Similar instruments

MESSENGER MLA

NEAR NLR

Orbiter: Radio Subsystem (RS)

Primary Science Investigations

- Europa static gravity field and gravitational and tides

Measurement Requirements

- − Degree-2 time-dependent gravity field, to recover k_2 amplitude at Europa's orbital frequency to ≤ 0.003 absolute accuracy and phase to ≤ 1°
- Europa position wrt Jupiter to \leq 10 m throughout orbital mission
- Europa static gravity field resolved to degree and order 30
 - Range-rate to < 0.1 mm/s at 60 s integration time
 - S/C orbit determination about Europa to accuracy of < 1 m (rms) in radial direction
- Near-polar near-circular orbit at \leq 200 km altitude for \geq 30 days
- Data arcs over several "unperturbed" days
- Range-rate measurements over several Europa tidal cycles

Configuration for Model Payload

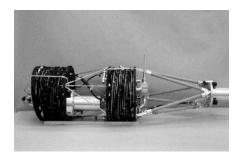
- X-band up and down; Ka-band down only
- Ka Transponder/Hybrid Diplexer
- USO not required

Orbiter: Magnetometer (MAG)

- Primary Science Investigations
 - Europa magnetic induction response

Measurement Requirements

- 3-axis magnetic field components at 8 Hz, 8 vectors/s
- Sensitivity of 0.1 nT
- Near continuous measurements
- Near-polar near-circular orbit at \leq 200 km altitude for \geq 30 days


Configuration for Model Payload

- Dual 3-axis fluxgate
- Sensitivity 0.1 nT
- Maximum sampling rate 32 Hz; sampling resolution 0.01 nT
- Sensors on boom 5 m and 10 m from S/C
- Spacecraft cleanliness of 0.1 nT desired, 0.5 nT required at outboard sensor
- Periodic S/C slow spins about two orthogonal axes for calibration

Similar instruments

MESSENGER MAG

Galileo MAG

Orbiter: Langmuir Probe (LP)

Primary Science Investigations

Europa ionospheric plasma effects on magnetic induction response

Measurement Requirements

- Local plasma density, temperature, and flow
- Electric field (near DC to 3 MHz)
- Electron temperature
- Ion currents
- 4π coverage
- Map approximately 12 hours of Europa local time
- − Near-polar near-circular orbit at \leq 200 km altitude for \geq 30 days

Configuration for Model Payload

- Two 5 cm diameter spheres mounted on 1 m long booms
- Booms pointed > 90° from each other, desire one always free of S/C wake
- Electronics (including pre-amp) in S/C vault < 3 m from sensors
- EMI/EMC cleanliness like Rosetta and/or Cassini

Similar instruments

Rosetta LAP

Cassini RPWS

Orbiter: Mapping Camera

Primary Science Investigations

 Landform mapping, Europa rotation state, and surface/subsurface material exchange

Measurement Requirements

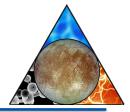
- ≥ 80% global mapping at ≤ 100 m/pixel
- 30 m vertical resolution topo, \leq 300 m horizontal footprint resolution
- Incidence angle > 45° (70° preferred)
- Near-polar near-circular orbit with consistent lighting

Configuration for Model Payload

- Pushbroom imager; 1024 pixel CMOS or CCD line array
- 5 separate line arrays in focal plane (radiation shielded)
 - 4 nadir viewing: panchromatic, 0.56, 0.76, 0.99 μm bands
 - 1 panchromatic viewing ~40° forward or aft for stereo
- IFOV = 0.85 mrad; FOV = 50°
 - 85 m/pixel at nadir from 100-km orbit altitude
 - 94 km wide swath (~3.4° of longitude at the equator)
 - 63 ms for 1 pixel of smear in 100 km orbit, providing good SNR
- Can elect to operate color and stereo bands, or not
- Loose pointing requirements (~2° accuracy; 5 mrad/s stability)
- Mounted on 2-axis gimbal platform (permits simultaneous imaging and HGA downlink)
- Small radiator with view to dark space


Similar instruments

MRO MARCI



MPL/MSL MARDI

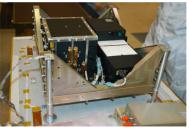
Flyby: Ice Penetrating Radar (IPR)

Primary Science Investigations

- Characterize distribution of shallow subsurface water and structure of ice shell
- Search for an ice-ocean interface
- Correlate surface features, subsurface structures, and geological processes

Measurement Requirements

- Shallow Mode: 10 m vertical resolution; 100 m to 3 km depth
- Deep Mode: 100 m vertical resolution; 1 km to 30 km depth
- Globally distributed intersecting and adjacent swaths, in 11 of 14 "panels"
- Supporting requirements:
 - Nadir altimetry, 10 m vertical resolution
 - Cross-track surface topography (stereo imaging), 100 m vertical res


Configuration for Model Payload

- Dual-frequency sounder
 - 60 MHz with 10 MHz bandwidth (shallow)
 - 9 MHz with 1 MHz bandwidth (deep)
- Deployed dipole antenna array on 15 m boom
- Range compression, pre-summing, Doppler filtering, data averaging, resampling in S/C electronics

Similar instruments

Mars Express MARSIS

MRO SHARAD

Flyby: ShortWave InfraRed Spectrometer (SWIRS)

Primary Science Investigations

- Characterize surface composition for representative landforms
- Characterize exogenic materials

Measurement Requirements

- Spectral Range 850 nm 5.0 μm
- Spectral Resolution 10 nm
- Spectral Channels 420
- Spatial Resolution 300 m @ 2000 km (IFOV = 150 μrad)
- Image Width 480 pixels (4.2°)
- Signal to Noise \sim 100 at 5 μ m (TMC 8), 18 at 5 μ m (TMC 1)
- Exposure time
- ~ 1 s / row (TMC 8) [7.7 min for full image], 0.12 s / row (TMC 1)

Configuration for Model Payload

- Implementation of 4 scans for each flyby: 2 @ 10 km/pixel (s/c slew) and 2 < 300 m/pixel (scan mirror, s/c tracking nadir)
- Single optic, single grating spectrometer & HgCdTe detector; TMC (scan mirror)
- Passive detector and spectrometer cooling
- Detector radiation noise (for TMC 8, 4% pixels are hit @ 9.5 cm tantalum shielding; for TMC 1, 4% pixels are hit @ ~3 cm Ta); calculation for worst case 0° inclination

Similar instruments

LRO M³

Flyby: Topographical Imager

100 km (matches width of radar swath)

Primary Science Investigations

- Removal of radar returns from off-nadir surface topography
- High-resolution stereo imaging of landforms for geology

Measurement Requirements

- Spectral Range visible
- Spectral Bands monochromatic
- FOV 58° (for stereo separation)
- Image Width @ C/A
- Signal to Noise ≥ 100

Configuration for Model Payload

- Pushbroom operation
- Stereo obtained through along-track overlap with ~ 50 m vertical resolution
- Image width 4096 pixels
- Spatial Resolution
 25 m @ 100 km alt (250 µrad iFOV) (6.2 m @ 25 km alt)
- SNR

- Exposure times

- ~ 100 @ 100 km alt (can increase to ~400 using TDI)
- ~ 27 @ 25 km alt (with TDI, can get up to ~ 100)
- 5.5 ms for 1 pixel of smear @ 100 km alt 1.4 ms for 1 pixel of smear @ 25 km alt

MESSENGER MDIS

MRO MARCI

New Horizons Ralph/MVIC

Radiation noise (% of pixels hit with electrons/1 cm Ta detector shielding) 0.5%

Flyby: Ion and Neutral Mass Spectrometer (INMS)

Primary Science Investigations

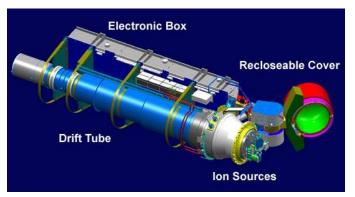
 Elemental, isotropic and molecular composition of Europa's atmosphere and ionosphere

Measurement Requirements

- Mass Range
- 1 300 Daltons n > 500
- Mass Resolution
- Sensitivity
- Field of View

10 particles/cm³

60 degree clear input


Configuration for Model Payload

- Ram pointed inlet
- Remote electronics
- One-time opening cover

Note on Sensitivity and Resources

 We solicited input from INMS providers to understand the limits on sensitivity and detection of minor species during fast flybys

Similar instruments

Rosina RTOF

Cassini INMS

Copyright 2011 California Institute of Technology. Government sponsorship acknowledged. *Pre-Decisional — For Planning and Discussion Purposes Only*