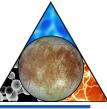


Flyby Element Kenneth Hibbard

10/19/11

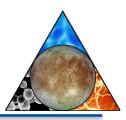
Science as a Driver of Mission Architecture

Science traceability leads to a <u>two element</u> mission concept:

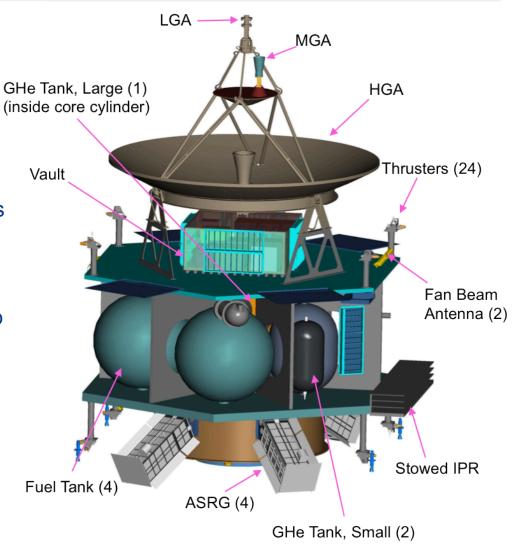


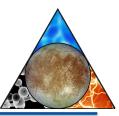
- Orbiter Element:
- Geophysical measurements that can be achieved only from <u>orbit</u>
- Payload focused primarily to address "Ocean" objective:
 - Radio Subsystem (RS)
 - Laser Altimeter (LA)
 - Magnetometer (MAG)
 - Langmuir Probe (LP)
 - Mapping Camera (MC)
- Have readily accommodated those instruments that are:
 - Less massive
 - Lower power
 - Lower data rate

- *Flyby Element:* Remote measurements that can be accomplished via <u>multiple</u> <u>flybys</u>
- Payload focused primarily to address "Chemistry" and "Energy" themes:
 - Ice Penetrating Radar (IPR)
 - ShortWave IR Spectrometer (SWIRS)
 - Ion and Neutral Mass Spectrometer (INMS)
 - Topographical Imager (TI)
- Have readily accommodated those instruments that are:
 - More massive
 - Higher power
 - Higher data rate

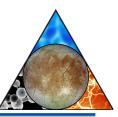


Instrument(s)	Key Accommodation Requirements	Element
Radio Subsystem + Laser Altimeter	Low altitude (~100+ km), circular, near-polar orbit, for at least 30 days. Unperturbed orbital arcs (no thrusting) of at least 3 days.	Orbiter
Magnetometer + Langmuir Probe	Low altitude (~100+ km), circular, near-polar orbit, for at least 30 days. Cover approximately 12 hours of Europa local time.	Orbiter
Mapping Camera	Low altitude (~100+ km), \ge 80% global coverage under near uniform lighting conditions, solar incidence angle > 45° (70° preferred).	Orbiter
Ice Penetrating Radar	≥ 800 km tracks in 11 of 14 globally distributed regions, intersected by at least 1 other track, with track lengths measured from ≤ 400 km alt. ~25–100 km closest approach at ≤ 6 km/s.	Flyby 🗸
ShortWave IR Spectrometer	Ability to target specific geologic locations with a wide range of surface locations, lighting between 9:00am and 3:00pm. Attitude stability < 1/2 IFOV over integration time, flyby speed < 6 km/s.	Flyby 🗸
Topographical Imager	High resolution stereo imagery aligned with IPR coverage; lighting conditions solar incidence angle > 20° (70° preferred).	Flyby 🗸
Ion and Neutral Mass Spectrometer	Low altitude (< 200 km with lower altitudes desired) at \leq 7 km/s; long integration times and low altitudes (\leq 100 km) preferred.	Flyby 🗸

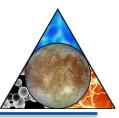

= areas accommodated in Flyby concept


Flyby Element Configuration Overview

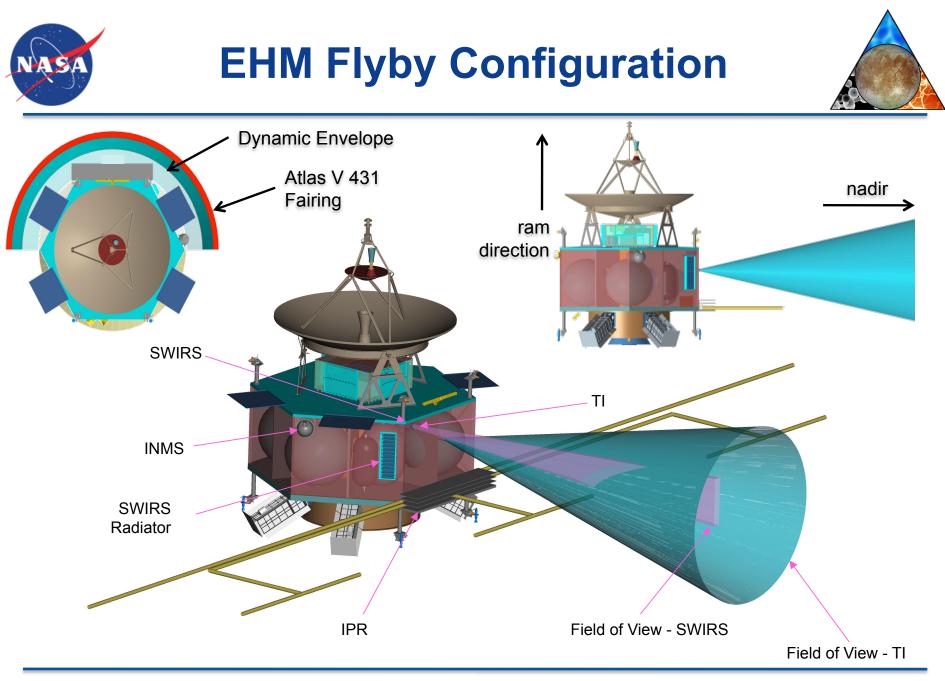
- Element design based on the latest science requirements from the Europa Science Definition Team (ESDT)
- Level of study was to drive to a single point design that accomplishes the element science at < \$1.5B, excluding launch vehicle costs
 - The Europa Study significantly builds upon the level of studies performed for the Planetary Science Decadal Survey last year
- Wide open trade space objective was to accomplish science and optimize the design for cost to fit within projected NASA budget
- Flyby element optimizes surface coverage over ~15-30 Europa flybys to achieve globally distributed regional observations



- Launch in the 2021-2024 timeframe with annual backup opportunity
- Existing launch vehicle: Atlas V 551 (or smaller); sized for Atlas V 431
- Utilize ASRGs: No limit on number, but strong desire to minimize ²³⁸Pu usage
- Mission Duration: < 10 years, launch to End Of Mission (EOM)
- Use commercially available 100 krad radiation hardened parts and shield as necessary for Total Ionized Dose (TID)
- Assumed a flyby mission system sized for ~40 flybys total
- Payload Observation Constraints:
 - <5 km/s max velocity at closest approach; limited by radar
 - 25-100 km closest approach altitude; bounded INMS and IPR
 - Examine Europa at different orbit points; ideal lighting is 9:00 am 3:00 pm
 - IPR requires crossing ground tracks
 - All instruments on ±1000 km from closest approach
 - IPR, TI, and SWIRS co-aligned, nadir pointed during flybys
- Optimized design for cost! We were looking for the lowest cost possible while achieving baseline science

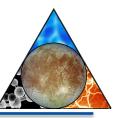


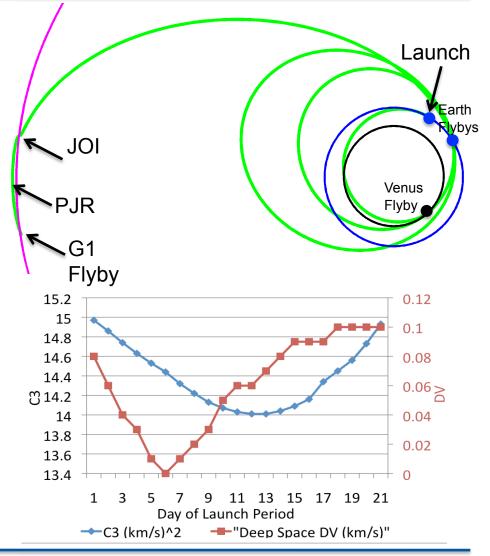
- Needed to accommodate radiation in Jovian environment, planetary protection concerns, and minimize Phase E operational costs (hibernation, minimize Time of Flight (TOF), other)
- Flyby concept permits store-and-forward data return strategy, as well as battery use with recharging between encounters
- Design for the lightest, compact spacecraft
- Design for low-maintenance low-cost operations
- Simplify implementation and integration using modular designs
- Use a combined radiation vault/thermal design for electronics
 - 100 krad parts
- Balance radiation exposure and science requirements
- Standard designs over custom
 - Draw off of internal experience from previous missions
- Minimize mechanisms (e.g. no gimbals on high gain antenna, fixed Leros engine)


Flyby Model Payload Resource Summary

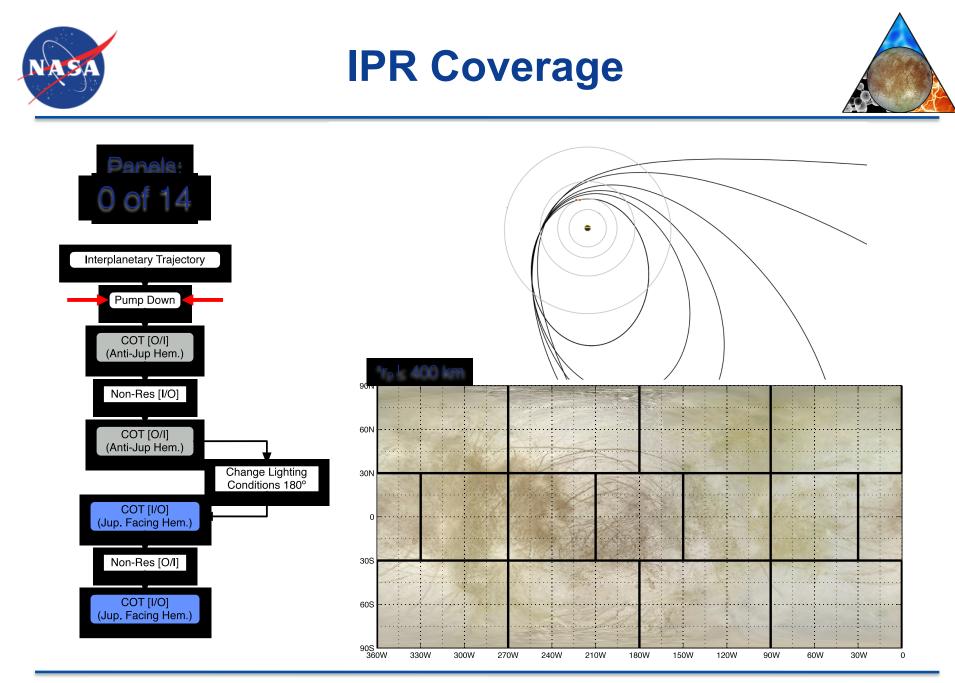
Instrument	Unshielde d Mass (kg)	Shieldin g Mass (kg)	Total Mass (kg)	Power (W)	Data Volume (Gb)/ flyby	Comments
Ice Penetrating Radar (IPR)	28.0	5	33.0	55	25.2	Bringing down data between ± 400 km from surface only (35 Gbit for ± 1000 km)
Topographical Imager (TI)	2.5	4.5	7.0	5.9	3.1	3:1 lossy compression; each additional 4 k x 4 k image is 0.07 Gbit compressed
ShortWave IR Spectrometer (SWIRS)	11.6	9.1	20.7	19.1	1.5	2.5:1 lossy compression; 2 full disk scans on approach; 2 full images during flyby
lon and Neutral Mass Spectrometer (INMS)	14.0	10.1	24.1	32.5	0.002	2 Kbps rate, acquiring data between ± 1000 km from surface
Totals:			84.8	112.5	29.9	

10/19/11

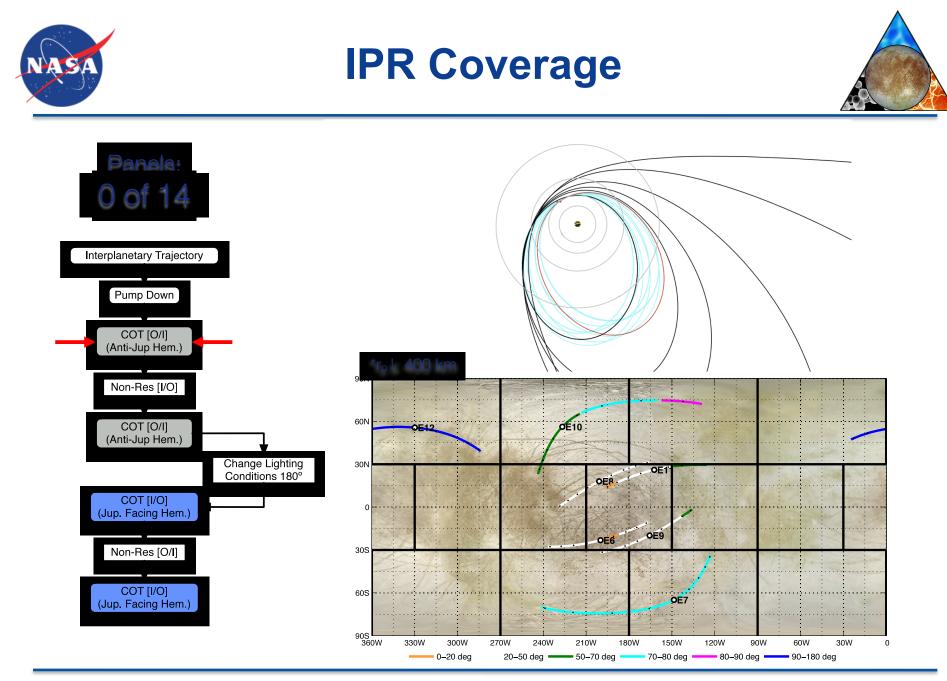

Copyright 2011 California Institute of Technology. Government sponsorship acknowledged. *Pre-Decisional — For Planning and Discussion Purposes Only*


10/19/11 Copyright 2011 California Institute of Technology. Government sponsorship acknowledged. 72 *Pre-Decisional — For Planning and Discussion Purposes Only*

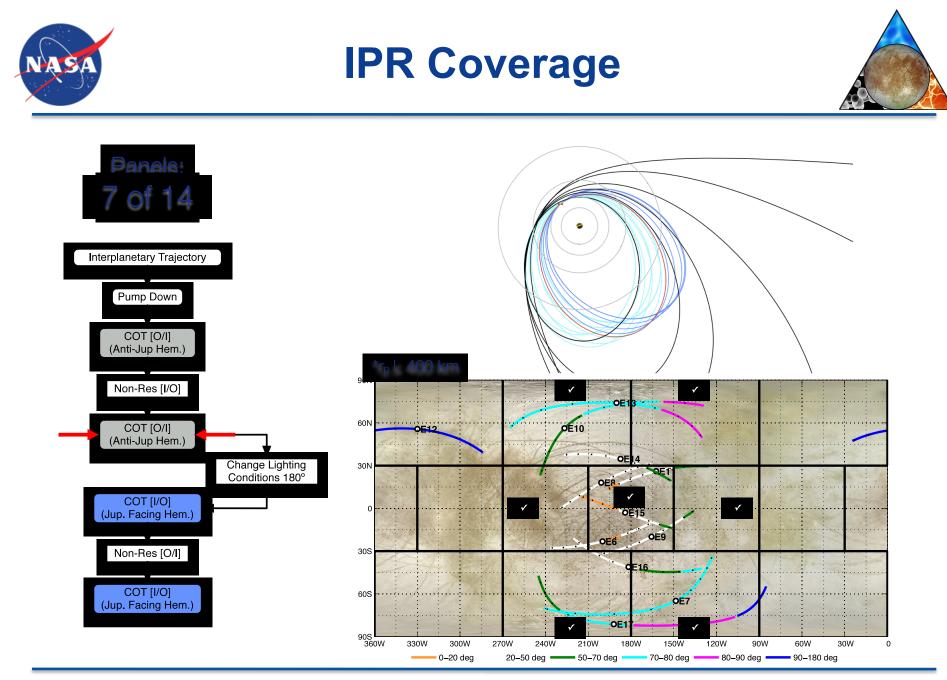
Interplanetary Trajectory

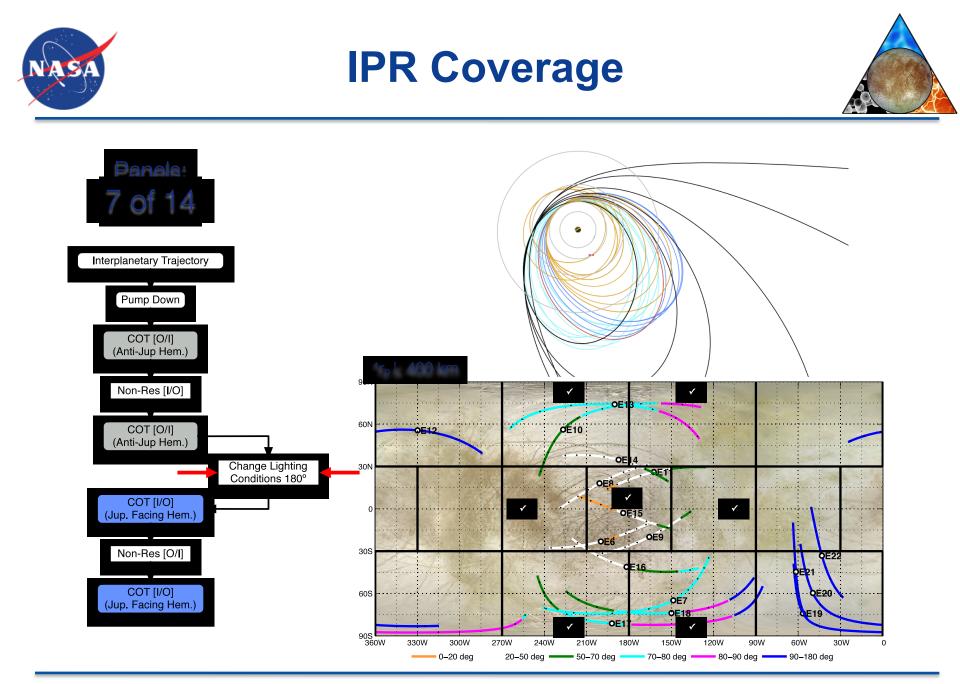


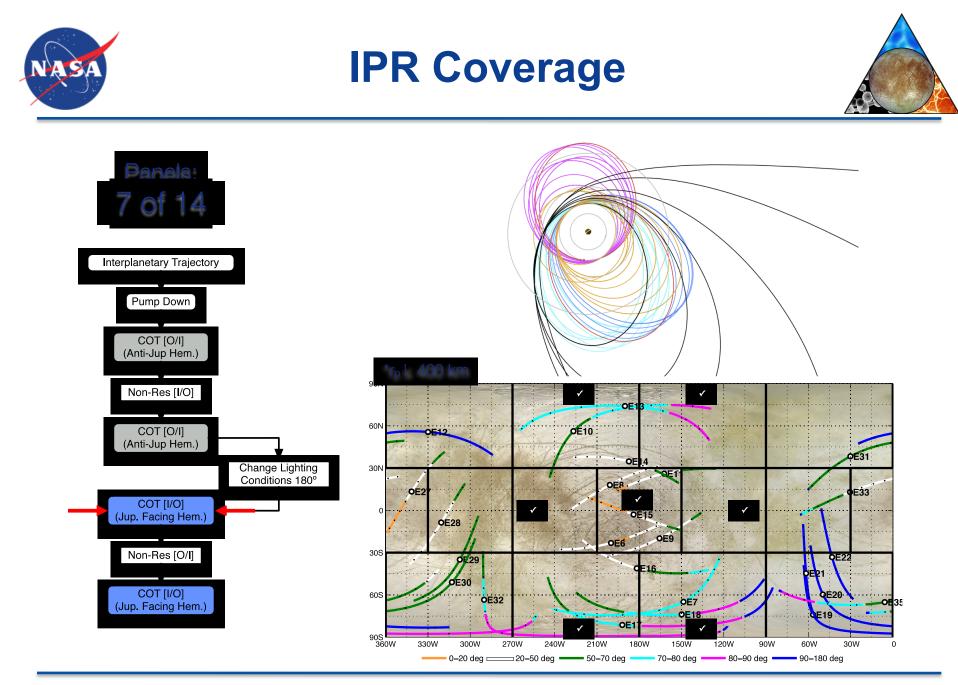
	DATE	Flyby Alt. (km)
Launch	21-Nov-2021	
Venus	14-May-2022	3184
Earth	24-Oct-2023	11764
Earth	20-Oct-2025	3336
G0	03-Apr-2028 15:00	500
JOI	04-Apr-2028 03:32	12.8 Rj
PJR	20-Aug-2028	238 Rj
G1	21-Oct-2028	



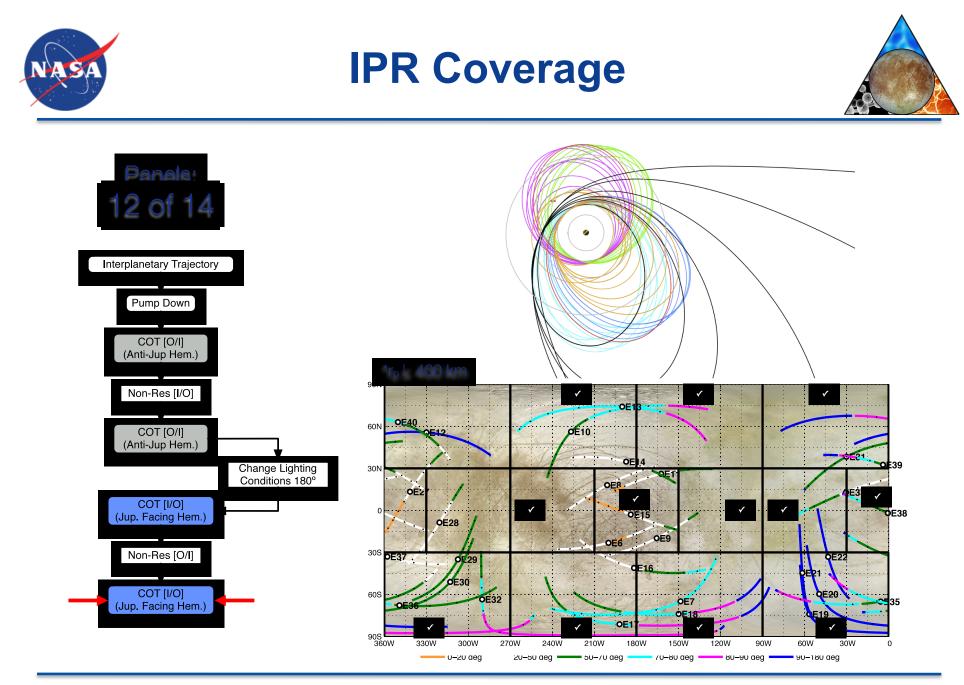
10/19/11


Copyright 2011 California Institute of Technology. Government sponsorship acknowledged. 73 *Pre-Decisional — For Planning and Discussion Purposes Only*


10/19/11 Copyright 2011 California Institute of Technology. Government sponsorship acknowledged. 74 *Pre-Decisional — For Planning and Discussion Purposes Only*

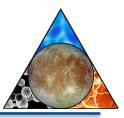

10/19/11Copyright 2011 California Institute of Technology. Government sponsorship acknowledged.75Pre-Decisional — For Planning and Discussion Purposes Only

10/19/11Copyright 2011 California Institute of Technology. Government sponsorship acknowledged.76Pre-Decisional — For Planning and Discussion Purposes Only



10/19/11 Copyright 2011 California Institute of Technology. Government sponsorship acknowledged. 77 *Pre-Decisional — For Planning and Discussion Purposes Only*

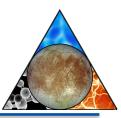
10/19/11

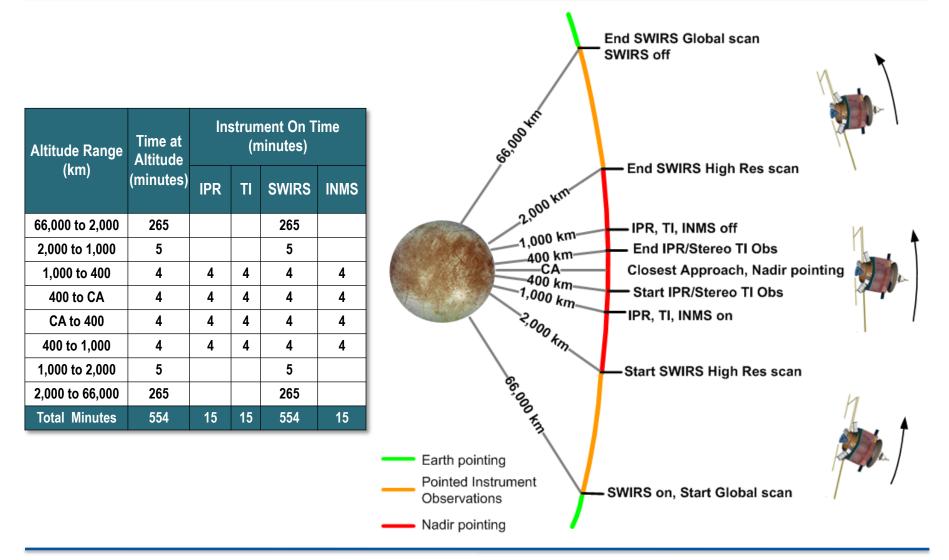

Copyright 2011 California Institute of Technology. Government sponsorship acknowledged. 78 *Pre-Decisional — For Planning and Discussion Purposes Only*

10/19/11 Copyright 2011 California Institute of Technology. Government sponsorship acknowledged. *Pre-Decisional — For Planning and Discussion Purposes Only*

Satellite Flybys

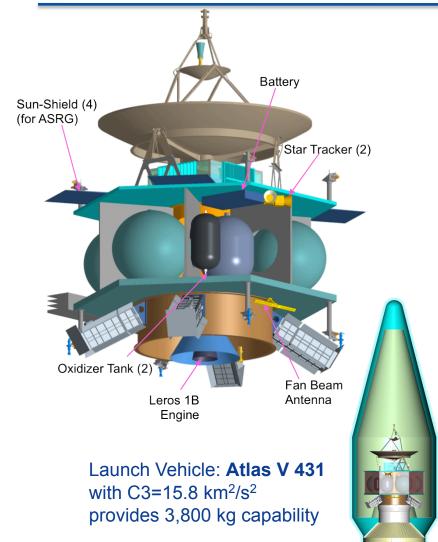
80


	Phase	Flyby	In/Out	Altitude [km]	V-Infinity [km/s]	Inc [deg]	Peri (RJ)	Apo (RJ)	m	n	Period (days)	tof (days)	
		Ganymede0	1	500	7.382	5.14	11.74	264.88	N	R	202.75	202.08	
e		Ganymede1	0	100	6.341	4.6	11.99	97.73	7	1	50.09	50.09	
gg	Pump Down	, Ganymede2	0	100	6.415	1.54	11.16	64.37	4	1	28.61	28.61	11 months
E C		Ganymede3	0	3496.3	6.366	1.37	10.63	51.74	3	1	21.46	21.46	
Š		Ganymede4	0	172.9	6.396	0.45	9.33	36.18	N	R	13.37	25.88	
Anti-Jupiter Hemisphere Coverage		Europa5	0	724.3	3.841	2.32	9.27	34.04	7	2	12.43	24.88	
e		Europa6	0	100	3.92	3.33	9.42	37.93	4	1	14.20	14.19	
he		Europa7	0	100	3.916	5.98	9.45	33.89	7	2	12.43	24.87	
d	COT-1	Europa8	0	100	3.935	5.01	9.5	37.86	4	1	14.20	14.19	4.7 months
ці;		Europa9	1	100	3.934	6.03	9.48	33.86	7	2	12.43	24.87	
e		Europa10	1	25	3.916	3.27	9.42	37.92	4	1	14.20	14.19	
Ŧ		Europa11		100	3.929	2.05	9.29	33.94	7	2	12.43	24.86	
ē	Non-Res	Europa12		100	3.898	0.34	9.34	38.12	N	R	14.25	14.43	
bit		Europa13	0	100	3.814	3.11	9.39	37.98	4	1	14.20	14.21	
n l	COT-2	Europa14	0	100	3.823	4.72	9.42	37.96	4	1	14.20	14.21	
- E		Europa15		100	3.823	4.55	9.37	38	4	1	14.20	14.21	3.2 months
Ę.		Europa16		25	3.814	2.58	9.31	38.07	4	1	14.20	14.21	0.2 11011115
<		Europa17		25	3.8	0.72	9.27	38.09	4	1	14.20	14.19	
		Europa18		100	3.817	3.36	9.22	34.12	7	2	12.43	24.85	
		Europa19 Europa20		100 100	3.849 3.853	6.17 8.73	9.17 9.22	29.92 25.39	3 5	1 2	10.65 8.88	10.64 17.75	
	Pump Down,			100	3.853	8.73 11.09	9.22	25.39	2	2			0.7
	Crank Up	Europa21 Europa22		100	3.872	12.87	9.23 9.28	20.6 17.15	2	3	7.10 5.92	7.10 17.74	2.7 months
		Europa22 Europa23		805.1	3.889	12.87	9.28 8.27	14.03	N	R	5.92	28.71	
		Ganymede24	0	1346.7	2.784	14.86	13.91	13.99		ran	7.15	3.53	
	Pi-tran	Ganymede24 Ganymede25	0	123.1	2.784	14.88	12.64	17.3	1	1	7.13	5.55 7.11	0.6 months
	i i-tran	Ganymede26	0	1584.7	2.754	10.2	9.06	15.75	Ň	R	5.39	8.51	0.0 11011115
		Europa27 (e)	1	100	3.506	10.2	9.35	17.07	5	3	5.92	17.75	
8		Europa28 (e)	- i -	100	3.501	9.63	9.43	20.41	2	1	7.10	7.10	
<u>n</u>		Europa29 (e)	i i	100	3.497	7.26	9.45	25.18	5	2	8.88	17.75	
Å e	COT3 Pump	Europa30 (e)	i i	100	3.496	4.52	9.42	29.67	3	1	10.65	10.62	0.7
8	Up, Crank	Europa31	0	100	3.476	6.56	9.39	25.25	5	2	8.88	17.77	3.7 months
	Down	Europa32	0	100	3.499	3.51	9.38	29.71	3	1	10.65	10.62	
E		Europa33	0	25	3.444	4.4	9.28	25.36	5	2	8.88	17.77	
ΞĔ		Europa34	0	601.8	3.474	2.52	9.34	29.78	3	1	10.65	10.64	
യ	Non-Res	Europa35	0	100	3.489	0.47	9.32	29.66	N	R	10.58	10.35	
<u> </u>		Europa36	1	100	3.475	3.47	9.31	29.79	3	1	10.65	10.65	
Į		Europa37	1	100	3.463	5.2	9.37	29.74	3	1	10.65	10.63	
- E	60T 4	Europa38	1	100	3.485	5.26	9.36	29.75	3	1	10.65	10.66	
Jupiter-facing Hem. Coverage	COT-4	Europa39	0	100	3.488	3.52	9.33	29.76	3	1	10.65	10.63	2.4 months
iq		Europa40	0	25	3.416	0.43	9.29	29.77	3	1	10.65	10.58	
٦٢		Europa41	0	2661.5	3.306	0.19	9.12	28.08	N	R	9.89	18.58	
	Impact	Ganymede42	1	100	5.766	-	-	-	-	-	-	-	
											e: Flyby	y in eclipse	


10/19/11

Copyright 2011 California Institute of Technology. Government sponsorship acknowledged. **Pre-Decisional — For Planning and Discussion Purposes Only**

Representative Europa Science Encounter


10/19/11

Copyright 2011 California Institute of Technology. Government sponsorship acknowledged. **Pre-Decisional — For Planning and Discussion Purposes Only**

Flyby

Flyby Spacecraft Configuration

Power

- 4 ASRGs (including margin)
- > Battery provides peak load capacity for transients

Propulsion

Dual mode 1089 m/s Biprop and 620 m/s Monoprop system

G&C

- > Spin-stabilized during cruise (supports hibernation)
- Three-axis control during science phase

Avionics

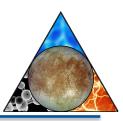
- > Two single processor avionics chassis; SpaceWire interfaces
- > Internally Redundant Power Distribution Unit
- Two Block Redundant SSRs (128 Gbit Storage)

Software

Standard capability to support uploadable stored command sequences, autonomous fault protection

Communications

- > X-band up and down, Ka-band science return
- > LGA, MGA, Fan-beam antennas, 2.4 m HGA


Mechanical

Panels are HoneyComb with AI core and AI facesheets

Thermal

- > Thermos bottle with constant internal heat dissipation in vault **Radiation**
 - ~100 krad parts behind ~850 mils Al with RDM of 2; boxes individually shielded in 200 mil vault

Flyby Element Mass, Delta-V, Power Summary

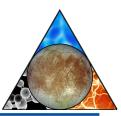
Flight System Mass

Atlas V 431 Capability3779 kgPropellant Mass (Max for LV Cap)1531 kgDry Mass CBE1242 kgLV and Payload Adapter79 kgTotal Wet Mass (CBE + Prop)2852 kg% Margin to CBE Dry Mass41%

Burn Type	Delta-V, m/s						
	Deterministic	Statistical	Total				
Launch Injection Cleanup	20		20				
Earth Bias DV	50		50				
IP Statistical DV Cleanup		50	50				
Deep Space Maneuver	150		150				
JOI	900		900				
Perijove Raise	80		80				
Flyby Tour = 44 flybys	200	170	370				
Total	1400	220	1620				

Flight System Delta-V Budget

Power Budget

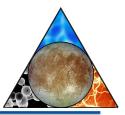

	Launch	Inner Cruise	Safe (Inner Cruise)	Outer Cruise (beacon)	Safe (Outer Cruise)	IOC /MSD	Orbit Stand-By	3-axis Science	Ka Downlink	TCM
Spacecraft Total	129 W	193 W	246 W	189 W	246 W	353 W	193 W	180 W	293 W	292 W
Payloads Total	0 W	0 W	0 W	0 W	0 W	0 W	0 W	113 W	0 W	0 W
Harness Loss 1%	1.3 W	1.9 W	2.5 W	1.9 W	2.5 W	3.5 W	1.9 W	2.9 W	2.9 W	2.9 W
Flight System Demand	131 W	195 W	249 W	191 W	249 W	357 W	195 W	295 W	296 W	295 W
ASRG Power Available	434 W	413 W	413 W	400 W	400 W	400 W	391 W	391 W	391 W	391 W
Unallocated Available Power	303 W	218 W	164 W	209 W	151 W	43 W	195 W	96 W	95 W	96 W
POWER MARGIN	70%	53%	40%	52%	38%	40%	50%		40%	

10/19/11

Copyright 2011 California Institute of Technology. Government sponsorship acknowledged. **Pre-Decisional — For Planning and Discussion Purposes Only**

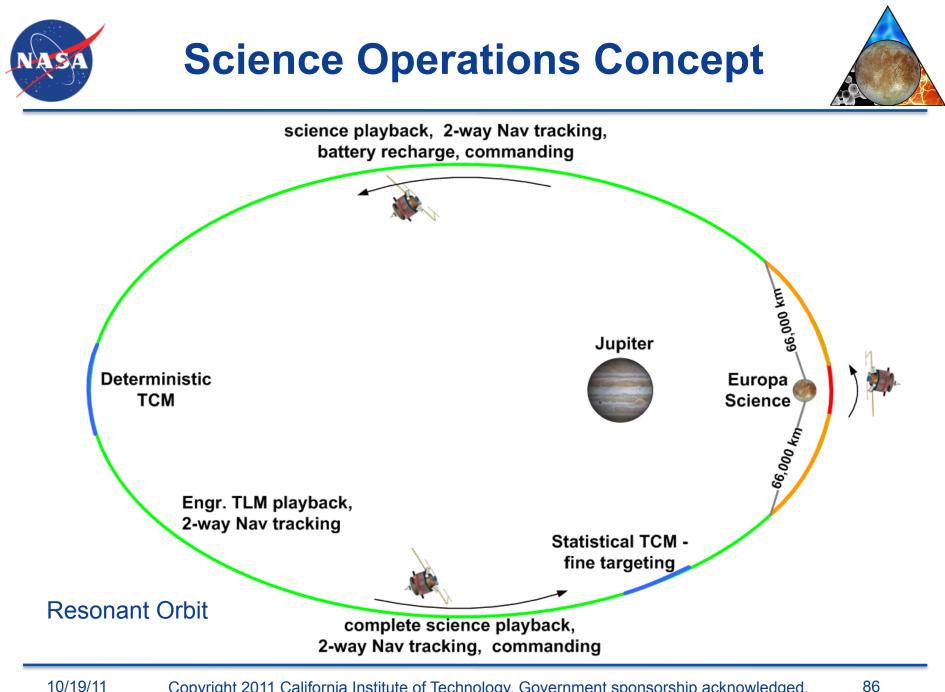
Radiation Mitigation Approach

Environment


Aluminum	Tota	Total Ionizing Dose (krad Si)						
Thickness (mils)	Electron	Photon	Proton	Total				
100	1960	7.0	46.6	2010				
200	893	7.9	10.9	912				
400	341	8.9	1.9	352				
600	178	9.5	0.9	188				
800	107	9.9	0.5	117				
1000	70.5	10.0	0.3	80.8				
1200	48.9	10.0	0.3	59.1				
1400	35.2	9.8	0.2	45.2				
1600	25.9	9.6	0.2	35.7				

- Followed a Juno-like vault approach
 - House most electronic assemblies within a vault to take advantage of neighbor shielding
 - Vault chassis provides 200 mils AI shielding
- Used NOVICE and FASTRAD along with CAD models of the spacecraft to determine dose levels within each electronic assembly
 - FASTRAD uses ray trace methodology
 - NOVICE performs radiation transport physics
 - Both methods yield similar results
- Adjusted the thickness for each electronic assembly housing for a 50 krad dose
- Allows use of 100 krad parts with RDF = 2

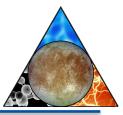
Planetary Protection



Article IX of the Outer Space Treaty of 1967 requires the prevention of "harmful contamination" of extraterrestrial solar system bodies. NASA's compliance with this treaty is documented in NPR 8020.12C. Europa missions, in particular, are covered in section A. 3.1 stating:

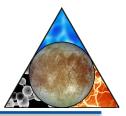
"Requirements for Europa flyby, orbiter, or lander missions, including microbial reduction, shall be applied in order to reduce the <u>probability of inadvertent contamination of an Europan ocean to less than</u> 1×10^{-4} per mission."

- Flyby strategy is to impact Ganymede at the end of mission, reducing the element's PP requirements
 - End of mission propellant has been budgeted
- Probability of contamination of a protected body is a function of:
 - Total bioburden at launch (DHMR)
 - Sterilization during cruise (yes)
 - Sterilization in the Jovian System (significant)
- Probability of impact with a protected body (*calculate probability, minimized by trajectory design*)
- Probability of survival and proliferation (minimal)
- Sterilization during impact event (yes)


Would follow the Juno process, but to be conservative, have included system level sterilization in cost estimate

Copyright 2011 California Institute of Technology. Government sponsorship acknowledged. **Pre-Decisional** — For Planning and Discussion Purposes Only

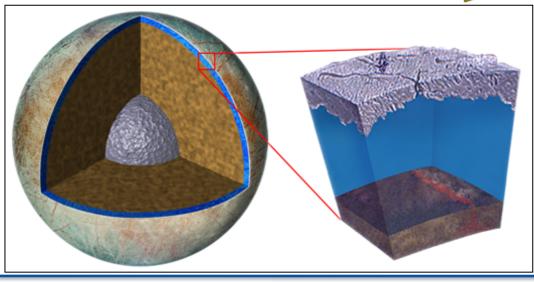
Science Data Return


- 30 Gbits/flyby, two 64 Gbit block redundant SSRs provide up to 128 Gbits of storage
- Downlink Rate: ~79 Kbps (average), 57 Kbps (worst case)
- Time to downlink 30 Gbits @ 57 Kbps = 146 hrs (worst case)
- Time allotted to Science Playback = ~242 hrs (assume 10 hours for flyby, 2 hrs for 2 maneuvers)
- CCSDS File Delivery Protocol (CFDP) will be used to ensure timely and efficient data playback, and to ensure complete science return between encounters

	IPR	TI	SWIRS	INMS	Total/Flyby			
Raw Data Rate (Kbps)	28,000	10,258	116	2				
On-time per flyby (Mins)	15	15	554	15				
Compression Factor	1	3	3	1				
Effective Output Rate (Kbps)	28,000	3,419	47	2				
Average Data Per Flyby (Gbit)	25	3	2	0.002	30 Gbits			
Worst Case Downlink Rate (Kbps)								
Downlink Time Required (Hrs)								
Downlink Time Available (Hrs) (worst case)								
Downlink Margin					22%			

Data Downlink Budget


10/19/11 Copyright 2011 California Institute of Technology. Government sponsorship acknowledged. **Pre-Decisional — For Planning and Discussion Purposes Only**



- Spacecraft concept specifically designed as a flyby element, utilizing proven approaches from Juno, New Horizons and other outer planets missions
- Significantly reduced mass to fit on mid-sized Atlas-V launch vehicle
- Significantly reduced amount of ²³⁸Pu
- Simple technical system and mission implementation
- Simplified development and operations concepts
- Radiation challenges addressed through nested shielding to maximize use of existing, qualified components
- Planetary protection concerns addressed by sterilization, with the potential option to simplify mitigation
- Cost estimated at ~\$1.5B (FY15)

The Flyby Element delivers a thorough science investigation of Europa, with a robust design that does not require technology advancements, at an affordable cost.

10/19/11

Copyright 2011 California Institute of Technology. Government sponsorship acknowledged. **Pre-Decisional — For Planning and Discussion Purposes Only**