

The DARCSIDE Concept Study for a CubeSat at Europa

N. J. Chanover¹, S. J. Stochaj², J. R. Murphy¹, A. Thelen¹, and K. Rankin³

¹NMSU Astronomy Department, ²NMSU Klipsch School of Electrical and Computer Engineering, ³NMSU Mechanical and Aerospace Engineering Dept.

Motivation: Science questions and traceability matrix

- Want to improve our understanding of tenuous, sputter-induced atmospheres of icy satellites
- Has implications for other icy satellites in outer solar system
- Has implications for the detection of biomarkers from possible Europa plume (Fig. 1)
- Performed 9-month concept study for *DARCSIDE*, the *Deployable Atmospheric Reconnaissance CubeSat with Sputtering Ion Detector at Europa*
- 3U CubeSat (10 x 10 x 34 cm), max. mass 4.5 kg
- Deployed from *Europa Clipper*
- Perform single low-altitude pass above Europa to measure atmospheric drag & heavy ion flux

Figure 1. Artist's rendition of a plume emanating from Europa's surface (NASA image).

Key Science Questions

- 1. How dense is Europa's atmosphere?
- 2. How is it linked to the local charged particle environment?
- 3. Can a plume generate a localized density enhancement of Europa's atmosphere?

DARCSIDE Science Question	Science Objective	Measurement	Instrument	Functional Requirements
What is the nature of Europa's atmosphere?	Determine Europa's atmospheric structure	Atmospheric drag	accelerometer	Altitude < 19 km Sampling rate ~ 1 Hz Sensitivity < 100 ng
	Determine hot ion flux at Europa	Elemental ion flux	Solid state particle telescope	8-100 MeV/nuc Pitch angle info

DARCSIDE Science Traceability Matrix

Instruments & Modeling

Figure 2. ADES accelerometer

- Under development by AFRL (Fig. 2)
- Detection limit of 10 nano-g (10⁻⁷ m/s²)
- Capable of measuring predicted drag on *DARCSIDE*

Figure 3. Energetic particle detector

- silicon strips and planes (Fig. 3)
- based on successful Low Energy Particle
 Telescope on *Voyager*'s Low Energy
 Charged Particle (LECP) experiment

Europa Atmosphere Models

- Used published models to initialize Europa's neutral atom torus
- Assumed atmospheric models based on two particle populations:
- ▶ Bound (but exponentially decreasing w/altitude)
- Escaping
- Computed family of atmospheric density profiles with range of surface gas densities (Fig. 4)
- Predicted drag felt by DARCSIDE (Fig. 5)

Figure 4. Atmospheric density profiles

- Used energy spectra of various ions as determined by *Galileo* near-Europa encounters (Paranicas et al. 2009) (Fig. 6)
- Figure 6. Ion flux characterization

DARCSIDE Flight System

Mission Overview

- Notional mission designed for Europa-15 pass of Europa Clipper (29 Aug 2029)
- Release 3U CubeSat from EC near apojove
- Deploy drag panels (w/solar arrays) (Fig. 7)
- Single low altitude drag pass over Europa's surface
- Data relayed back to EC
- Final EOM maneuver at apojove

Figure 7: Deployment sequence for DARCSIDE drag panels

Component	Part Number	Supplier
Flight Computer	NanoMind AD712D	GOMSpace
Thruster	MPS-130	Aerojet Rocketdyne
Star Tracker	ST-200	Berlin Space Technology
Solar Cells	ZTJ	Emcore
EPS Board	CS-3UEPS2-NB	Clyde Space
Battery Pack Main	CS-SBAT2-10	Clyde Space
UHF halve duplex transceiver	U482C	GOMSpace

Figure 8: Spacecraft bus (above) uses COTS components

Budgets	System Totals with 10% Contingency
Mass	4.31 kg
Power	5.78 W
Data	1936 bits/s

