

r University of Colorado Enhanced electromagnetic sounding of Europa's ocean using **CubeSats**

Frank Crary, Justin Holmes, David Malaspina, James Mason, Drake Ranquist, Quintin Schiller, Andrew Sturner, and Rick Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder

Introduction

If the Europa Multiple Flyby Mission (EMFM) carried a CubeSat deployer, what CubeSats would you put in it?

- · Hypothetical concept study funded by JPL In 2014
 - Examples of small, secondary satellites on major planetary missions
- Europa Multiple Flyby Mission is in development for 2022 launch
 - Will orbit Jupiter and make 45 close flybysof Europa
- · A primary goal of Europa Multiple Flyby Mission (EMFM) is investigating the ocean below Europa's icy surface
 - Ice shell above the ocean is estimated to be 10 to 100 km thick
 - Properties of this ocean can only be inferred indirectly
 - Electromagnetic sounding is a major sources of data on this ocean
- · "CubeSAt for ice Laver Thickness" (CSALT) concept

I: Electromagnetic sounding

- Use multiple 1U or 1.5U CubeSats each on separate encounters
- Make simultaneous magnetic field measurements with EMFM
- Fly along a trajectory parallel to but separated EMFM
- Electromagnetic sounding of Europa will be significantly enhanced

II: Induction and Plasma Interaction

- · The ocean is not the only source of magnetic field perturbations
- · Strong perturbations from the plasma interaction between Jupiter's magnetosphere and Europa's atmosphere/ionosphere
- · This is the largest source of uncertainty in determining the phase and amplitude of the ocean-induced dipole
 - The uncertaianty is 10-100 nT-Re3 (>10%) [Crary et al., EGU 2014]
 - There are several ways to reduce this uncertainty to <1%
- · Measurements to constrain models of the plasma interaction
 - Allow estimats of the plasma perturbation to be subtracted from data

 - Plasma Instrument for Magnetic Sounding (PIMS)
 - Set of ion and electron Faraday Cups
 - Part of EMFM payload for exactly this reason
 - Resource-limited and may not allow removal of perturbations to <1%
- Multiple encounters can reduce errors
 - Illustrated by approximate model
 - · Neubauer, 1980 Alfven wing currents
 - Closure current through body
 - Ma=0.27, 25% slowing of flow, 0.26 M/ Also shown is field from 100nT-R³
 - induced dipole.
 - The field is calculated along a trajectory for two polar encounters, north and south, similar to those some planned for FMFM
 - North pole encounter: Induced and interaction signatures correlated
 - W/out accounting for interaction, in duced dipole overestimated by 47 nT-R³
 - South pole encounter: Induced and interaction signatures anti-correlated
 - W/out accounting for interaction, induced dipole underestimated by 46 nT-R
 of the underestimated by 46 nT-R
 - Analyzed together the errors from the interaction would nearly cancel
- · The real world will not be this kind
 - Real encounters will have less ideal geometries, cancelation will be partial From the interaction will be reduced but not eleminated.

 - Induced dipole amplitude at multiple phases required
 - Multiple encounters with different geometries would be required a multiple number of phases
 - Jupiter's plasma conditions are highly variable
 - Plasma conditions on each encounter will be different
 - Multiple encounters required to average out plasma variability, at multiple phases, at multiple encounter geometries
- Multiple x Multiple >> 45
- . This would require far more than the planned 45 EMFM encounters

CubeSAt for ice Laver Thickness (CSALT) Concept

- CSALT spacecraft will be 3, 1U or 2 1 SU CubeSats
 - performance floor while adding 50% margins
- Each carries a magnetometer, star tracker as its payload
- CubeSat orientation will not be controlled but it must be know
- Designed to satisfy a ±0.1 nT requirement without a boom
 - Magnetically clean star trackers have been flown (e.g. Ørsted and Juno)
 - Other electronics and telecommunication systems need development
 - Small number of components and exclusive use of batteries will greatly help
- Battery powered for 3 day mission (possible 12 hour extended mission)
- · CSALT will relay all data through the Clipper
 - 1200 bps using a 0.25-2 W radio and an orm idirectional antenna
 - This link will also be used for tracking (range only) of the CubeSat
- Spacecraft will be released from EMFM individually, one per encounter
 - Approximately 2 ¾ days prior to closest approach and drift in low power mode (<1 W)
 - At closest approach 3 hours, transition to 3 Wiscience mode (2 hour warm-up time)
 - Key measurements from -1 hourto +1 hour (inside 10 Rs)
- Measurements along two well-separated trajectories (CSALT & EMFM)
 - Errors from plasma interaction will be greatly reduced in a single encounter
 - Measurements are at the same phase and plasma conditions
- Adual encounter is worth multiple x multiple encounters by EMFMalone
- CSALT will provide 2—3 dual encounters

V: Deployment and Trajectory

- CSALT trajectory must be well-separated from EMFM
- CSATT and EMEM must remain above horizon at closest approach
- · Closest approach above ionosphere (less ambiguous measurements)
- Close for strong induced field signature, >50% surface amplitude
- Target 300 ±100 km closest approach altitude
- 1200 km (42°) separation from EMFM at closest approach
- . After encounter, trajectories diverge: 7500 km separation at +2.2 hrs
 - Radio communications limit at 2 W transmitted power
- · Requires deployment at 5 m/s, 67.5 hours prior toclosest approach
 - 2.5 times faster than from a standard deployer
 - The speed and direction controlled to 10% and 4°
 - Deployer will modifications for this and to allow sequential deployments

VI: Radiation

- Radiation is a major design driver for EMFM
- Most of the dose is accumulated during Europa encounters
 - Prior to first encounter, total integrated dose (TID) will be relatively low
- · All three CSALT will be deployed during the first five encounters
- Radiation estimate assumes:
 - 50 mil Al thickness shell for CubeSats, 100 mils from walls of deployer
 - 1.33 g-cm⁻³ Al (equivalent) from CubeSat components
- . TID of 64 krad for parts in faces of CubeSat prior to fifth encounter
 - Only 6.6 krad for parts in center
- · 18 and 0.6 krad, respectively, during science encounter itself
- · Existing commerical (COTS) parts can not be used
 - 15-165 krad (RDF of 2) can be achieved by replacing sensitive parts
 - Mass and power budget assume properties similar to existing COTS parts

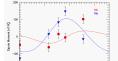
VII: Planetary Protection

- · Planetary protection is a serious concern for CSALT
 - CSALT will end mission in an orbit similar to Europa
 - CSALT has no propulsive capabilities for disposal
 - Spacecraft will eventually impact Europa, 5 year mean time to impact
- · Unlike EMFM, CSALT components are not heavily shielded
 - No "Vault" for sensitive electronics
- · Even the most shielded parts accumulate 27 krad/year
- . 5 years exposure is 145 krad in center of CubeSat, 5 Mrad on faces
- · Planetary protection requirements similar to EMFM can be satisfied

VI: Conclusions and Open Issues

- CSALT will enhance the magnetic sounding of Europa's ocean
- CSALT/EMFM encounters worth many stand-alone encounters
- · Impact on EMFM mission is minimal
 - ~10 kg of payload mass
 - Reorient EMFM spacecraft for deployment at c/a-65 hours
 - Receive and relay telemetry and support ranging
- Adding CubeSats to EMEM adds no risk to primary mission
 - Success of CSALT is not necessary for success of EMFM
 - CubeSat interface designed to remove risk and impact to primary mission
- · Development of CubeSats for planetary missions needs discussion
 - Are CubeSats a "spacecraft" or a free-flying instrument?
 - CubeSats are inherently not Class A hardware
 - Requiring Class-A development would add significantly to cost
- Are COTS narts allowed? What margins are required? · Are these Europa CubeSat concepts "CubeSats" or class A nanosats?

The induced electric currents in theocean inside Europa'sice


These electric currents generate an induced magnetic field which spacecraft can

electromagnetic sounding The large uncertainty (>15%) limited the result to a detection, not a determination of ocean properties

Measurements at 1% or lower uncertainty can reveal the ocean's

depth, thickness and conductivity (salinity.)

The Galileo magnetometer observed Europa's ocean through

- 10x10x10 cm, 1,33 kg or 15x10x10 cm, 2.00 kg = 3 x1 II is haseline 2 x1 5 II is