Robotic Concepts for Surface and Subsurface **Exploration of Ocean Worlds**

Hari Nayar Jet Propulsion Laboratory, California Institute of Technology **Brian Wilcox** Jet Propulsion Laboratory, California Institute of Technology

Objectives

- Develop autonomous mobility and sensing systems to explore on the surface and subsurface conditions found on ocean worlds
- Design, prototype and demonstrate robotics systems and demonstrate them in laboratory testbeds and at relevant field sites

Proposed Science Goals

- Characterize ocean habitability
- Detect extant life
- Understand geology
- Determine origins

Notional Mission Scenarios

- Lander proximity science 1-10 m range
- Long-range mobility up to 10 km range
- Subsurface exploration penetration to 1 km below surface

Sampling Concepts

Collect samples up to 10 cm below surface from a lander or mobility system

Bear-claw sampler

Lander Proximity Science Concepts

Perform science operations up to 10 m from a landing site

Long-Range Mobility Concepts

Traverse up to 10k m over the diverse terrains expected on ocean worlds

Deep Subsurface Access Concepts

Perform science operations at up to 1 km depths on ocean worlds

Environment and Testbeds

- Perform ice characterization experiments
- Develop subsurface testbed
- Develop mobility testbed

Mobility testbed: tilt-table

Mobility testbed: gravity off-loading

Subsurface access testbed