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Low-Temperature Rechargeable Batteries

e State-of-practice Li-ion cells exhibit low specific energy at low
temperatures

e Risk of lithium plating a concern during low-temperature charging

e JPL is developing and demonstrating high specific energy Li-ion
cells, using electrolytes formulated for low-temperature operation
(see below)

e Potential to eliminate battery control board required to balance cells

¢ Reduce thermal management (equivalent of 22% of the mass of
the battery is currently used for thermal management hardware for
Li-ion/solar array based energy storage)

Proposed Rechargeable
Low Temperature Li-lon
Batteries
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Proposed Rechargeable
Low Temperature Li-lon
Batteries

State-of-practice

R Rechargeable Batteries

Cell Specific Energy at +20°C (Wh/kg) 130-150 150-200 150-200

BOL Cell Specific Energy at Low

Temperature (Whkg, discharge) 95-115 at -20°C 2100 at -40°C 75-100 at -60°C
Cycle Life >500 300 300
Lower Temperature Charging Limit ("C) -20 to -30 -40 -60
Operational Temperature ("C) -30to +35 -40to +35 -60 to +35
Shelf Life (Years) 15 15 15
Heritage Inggﬁte rCii)—(i’on

Low Temperature Primary Batteries

e New power options are needed for moderate-duration surface
missions

e Primary batteries traditionally support mission operations over
several hours (e.g., Galileo and Huygens probes)

e Future missions will need primary batteries to provide power for
days, requiring higher specific energy cells relative to state-of-
practice

e Advanced primary chemistries are under development (see below)
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COTS Li-SOCl, LiCFx/MnO, COTS Li-SO, COTS Li-MnO,

Advanced Li-CFX/Mn0, cells outperform COTS/space-rated primary cells at
0°C, delivering more capacity using the same D-cell format

Low-Temperature Supercapacitors

e Supports high current pulses with and high specific power (>1 kW/kg)

e Excellent low-temperature performance due to double-layer charge
storage mechanism (vs. intercalation/de-intercalation processes)

e Performance extended to -80°C with custom electrolytes
e Also evaluating COTS parts under Tvac conditions

e Can be coupled with Li-ion batteries for a high specific energy/high
specific power hybrid power source
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Discharge Energy (Wh/Kg)

Small, cylindrical Li-ion cells with custom electrolytes outperform both COTS
parts and space-rated prismatic cells, delivering a higher capacity at tempera-
tures down to -40°C (at C/20 discharge rates)

Voltage & Current

Primary Fuel Cells

e Primary fuel cells may offer advantage relative to primary batteries

e Harvesting of unused propellants offers one means to provide
additional surface power

e Heat generation during operation provides thermal management
options

e Currently studying several configurations to prolong surface
operations (see table below)
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