Atmospheric Entry

Deploy

119 K

110

Temperature

Parachute

Small Next-generation Atmospheric Probe

SNAP Mission Overview

Add SNAP to Uranus Orbiter and Probe Mission Orbiter delivers Main Probe and SNAP to Uranus

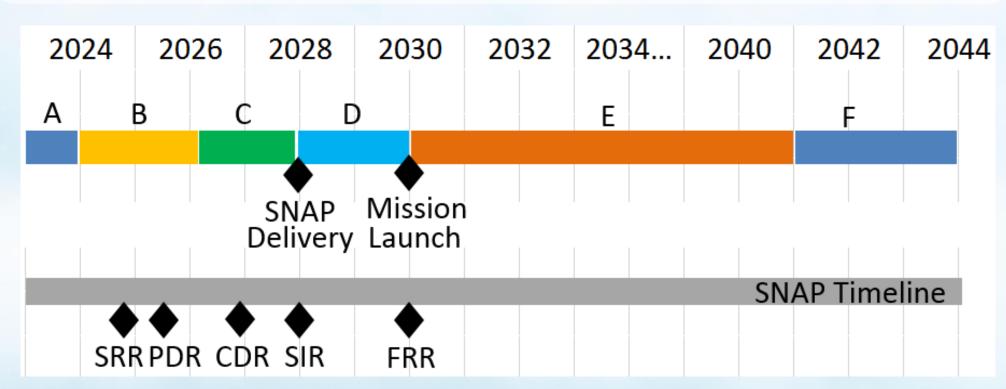
- + Probes enter summer & winter hemispheres
- + Parachute Descent
- + Detect Seasonal Difference
- + Sample Two Cloud Layers
- + Send data to Orbiter
- + Orbiter relays data to Earth

SNAP: Small Next-generation Atmospheric Probe Concept

- + Can be added to a mission to a giant planet
- + Reduces cost of in-situ atmospheric measurements
- + Enables in-situ exploration at multiple sites
- + Enhances science return of the host mission with small cost
- + Pushes the state-of-the-art for small atmospheric probe technologies
- + Defines the next generation of atmospheric probes

Compelling Scientific Objectives

The objectives are from the 2013 Planetary Science Decadal Survey


Determine vertical distribution of cloud-forming molecules Determine thermal stratification Determine wind speed as a function of depth

Measure abundances of the noble gases (He, Ne, Ar) Measure isotopic ratios of H, C, N, and S

The SNAP Team

Kunio Sayanagi, PI, Hampton University Robert Dillman, Lead Engineer Co-I, LaRC David Atkinson, Science Co-I, JPL Amy Simon, Science Co-I, GSFC Michael H. Wong, Science Co-I, UC Berkeley Tom Spilker, Mission Architecture Co-l Sarag Saikia, Mission Architecture Co-I, Purdue University Jing Li, Science Collaborator, NASA Ames NASA Langley Research Center Engineering Design Studio

Notional Mission Schedule

Mission schedule is notional and it will be updated based on the study results

Anticipated Payload

Atmospheric Structure Instrument: Measure stratification

NanoChem: Detect cloud-forming molecules

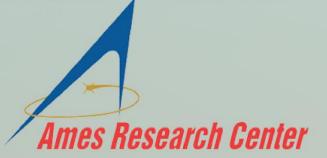
Ultra-Stable Oscillator: Measure wind speeds

Additional payload studies: Helium Abundance Detector, Mass Spectrometer for isotopic ratios

Relevance, Importance to PSD Science and Science Plan

SNAP Science Objectives are highly relevant to PSD Science Goals and 2014 NASA Science Plan:

- + Formation and Evolution of Uranus
- + Chemical and Physical Processes in Uranus
- + Role of Giant Planets in Origin and Evolution of Life on Earth


80 76 km 50 mbar 54 K 60 km + 100 mbar 53 K 40 CH₄ Ice Clouds? 76 K 0 km + 1 bar -20 -40 H₂S Ice Clouds? -60 -72 km + 5 bar 90 50

