SPRITE: Saturn **PR**obe Interior and aTmosphere **E**xplorer

Thomas R. Spilker

Feb. 23, 2017

© 2016. California Institute of Technology. Government sponsorship acknowledged.

Decadal Survey Saturn Probe

PSDS Highest Priority Science Objectives

- 1. Determine the noble gas abundances and isotopic ratios of H, C, N, and O in Saturn's atmosphere.
- 2. Determine the atmospheric structure at the probe descent location.

PSDS Lower Priority Science Objectives

- 1. Determine the vertical profile of zonal winds as a function of depth at the probe descent location(s).
- 2. Determine the location, density, and composition of clouds as a function of depth in the atmosphere.
- 3. Determine the variability of atmospheric structure and presence of clouds in two locations.
- 4. Determine the vertical water abundance profile at the probe descent location(s).

5. Determine precision isotope measurements for light elements such as S, N, and O found in

simple atmospheric constituents.

Science Overview

- The giant planets in our solar system contain clues to the origin of the planets and the conditions that set up terrestrial planet formation
 - Comparative study of Jovian and Saturnian composition and structure maps gradients in time and space in our protoplanetary disk
 - Jupiter will be well studied after Galileo/Juno, but which of its features (core size, circulation, etc.) are unique vs universal?
 - Cassini will leave knowledge gaps about Saturn that are critical pieces
 of the puzzle of solar system formation and can only be filled by in situ
 sampling
 - These will be key also for understanding exoplanet systems

SPRITE Mission Science Goals and Objectives

- Goal I. Understand Saturn's formation and early evolution
 - Obtain a chemical inventory of Saturn's troposphere to distinguish between competing models of planet formation and extent of migration in the early solar system.
 - Constrain Saturn's He depletion to reconcile observed temperatures with thermal evolution models.
- Goal II. Reveal the actual conditions beneath Saturn's clouds
 - Measure Saturn's atmospheric chemistry in situ to test condensation models and to interpret remote sensing observations.
 - Perform in situ characterization of Saturn's tropospheric clouds to understand their structure and provide ground truth for cloud retrieval models.
 - Measure in situ Saturn's 3-D atmospheric dynamics along the probe descent path to better understand global circulation and constrain analytical models of the time-variable cloud top motions

Critical investigations into Saturn's formation and evolution require in situ measurements that also provide ground truth for remote sensing observations.

Goal 1: Saturn's Formation and Early Evolution

Did Saturn stop Jupiter's inward migration?

Need to know when and where it formed!

http://www.exoclimes.com/wp-content/uploads/2014/07/GrandTackIllustration1.png

Objective 1: Composition

Light elemental and noble gas abundances will tell us when and where Saturn formed, as well as distinguish among protosolar nebula models

Objective 2: Helium abundance and thermal evolution

Saturn's observed effective temperature is too warm if it formed 4.6 Gyr ago.

Helium rain or internal structure can prolong thermal evolution

Goal 2. Actual Conditions Beneath Saturn's Clouds

Remote sensing limits us primarily to the upper cloud decks, hiding deeper composition and motions

Objective 3. Cloud chemistry

What are Saturn's cloud layers?

Direct measurement of condensable species, plus temperature profile to distinguish cloud forming regions

Objective 4. Measurements of Cloud Structure

Hazes and cloud reflections vary with wavelength, allowing some constraint from remote sensing.

Direct measurement of cloud particles provides ground truth.

Objective 5. 3-D Dynamics

Galileo Probe showed high speed winds below Jupiter's clouds, and waves above. Does Saturn do the same?

Saturn's winds vary at low latitudes over time and altitude

Science Implementation: Payload

SCIENCE OBJECTIVES

Objective 1: Obtain a chemical inventory of Saturn's troposphere

Objective 2: Investigate Saturn's atmospheric chemistry

Objective 3: Constrain Saturn's interior structure

Objective 4: Provide *in situ* characterization of Saturn's tropospheric cloud structure

Objective 5: Measure Saturn's *in situ* 3-D atmospheric dynamics at probe entry site

SCIENCE INSTRUMENTS

QMS: Quadrupole Mass Spectrometer

TLS: Tunable Laser Spectrometer

ASI: Atmospheric Structure Instrument

MCI: Multi-Channel Imager

Mission Architecture Overview

- Solar-powered Carrier-Relay Spacecraft (CRSC) carries atmospheric probe
 - Probe released at Entry T-30 days on battery power
 - CRSC performs a divert maneuver to relay trajectory
 - Relay: ~80 minute descent, 120 minute relay window
- CRSC tracks Probe, records data; relays back to Earth after flyby
- Multiple launch opportunities

Juno

--InternalStructure--O abundance

Galileo Probe

-- ElementalComposition,except O-- Isotopes

Juno
--Internal
Structure
--O abundance

Cassini Proximal
Orbits
--Internal

Structure/Core

Jupiter wellcharacterized

Galileo Probe

-- ElementalComposition,except O-- Isotopes

SPRITE supplies the missing piece Saturn Probe -- Elemental Composition -- Isotopes

SPRITE Team

- A. Simon (GSFC), Principal Investigator
- D. Banfield (Cornell) Dep. Principal Investigator
- D. Atkinson (JPL), Project Scientist
- M. Trainer (GSFC), QMS Instr. Lead, calibration, archiving
- W. Brinckerhoff (GSFC), QMS Deputy Instrument Lead
- C. Webster (JPL), TLS Instr. Lead, calibration, archiving
- J. Blacksberg (JPL), TLS Deputy Instrument Lead
- A. Colaprete (ARC), ASI Instr. Lead, calibration, archiving
- S. Atreya (U. Michigan)
- N. Chanover (NMSU)
- A. Coustenis* (LESIA)
- L. Fletcher* (U. Leicester)
- J. Fortney (UCSC)
- T. Guillot* (Obs.Cote d'Azur)
- J. Lunine (Cornell)
- O. Mousis* (LAM)
- K. Soderlund (U. Texas)
- T. Spilker (Indep. Consult.)
- M. Hofstadter* (JPL)
- J. Jackiewicz* (NMSU)
- P. Mahaffy* (GSFC)
- M. Marley* (ARC)

SPRITE — Mission to Saturn's Origins

Questions?