Assessment of Space Solar Power Technologies for Next Decadal Planetary Science Missions

Rao Surampudi, John Elliott
Patricia Beauchamp and James Cutts

NASA Jet Propulsion Laboratory, California Institute of Technology

January 5, 2017
Study Objectives
Solar Cell/Array Technology Assessment

• Review the space solar power system needs of future planetary science missions

• Assess the capabilities and limitations of state of practice space solar cell/array systems to meet the needs of future planetary science missions.

• Assess the status of advanced solar cell/array technologies currently under development at NASA, DOD, DOE and Industry and assess their potential capabilities and limitations to meet the needs of future planetary science missions.

• Assess the adequacy of on-going technology development programs at NASA, DoD, DOE and Industry to advance space solar power system technologies that can meet the needs of future planetary science missions.

• Identify technology gaps and technology programs to meet the needs of future planetary science missions.
Review Team
Solar Cell/Array Technology Assessment

- Rao Surampudi, NASA-JPL
- Julian Blosiu, NASA-JPL
- Paul Stella, NASA-JPL
- John Elliot, NASA-JPL
- Julie Castillo NASA-JPL
- Thomas Yi, NASA-GSFC
- John Lyons, NASA-GSFC
- Ed Gaddy - APL
- Mike Piszczor - NASA-GRC
- Jeremiah McNatt, NASA-GRC
- Ed Plichta US Army
- Simon Liu, Aerospace
- Chuck Taylor, NASA HQ
- Christopher Iannello, NASA HQ
PV Technology Challenges for Outer Planet Missions

- Low Solar Intensities (< 40 W/m²)
- Low Temperatures (< -140 C)
- High Radiation (6e15 1MeV e-/cm²)
- Low Mass (~ 3X lower than SOP)
- Low Stowage Volume (~ 3X lower than SOP)
- Long Operational Life (> 15 years)
- High Reliability
Over 3 orders of magnitude reduction in solar irradiance from Earth to Pluto
PV Capability Needs for Next Decadal Outer Planet Missions

<table>
<thead>
<tr>
<th>Mission Type</th>
<th>Mission</th>
<th>Performance Capability Needs*</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbiters/Flyby</td>
<td>Jupiter</td>
<td>• LILT Capability (> 38% at 10 AU & < -140 C)</td>
<td>Enhancing & Enabling</td>
</tr>
<tr>
<td></td>
<td>Saturn</td>
<td>• Radiation Tolerance (6 \times 10^15 \text{ 1MeV } \text{e}/\text{cm}^2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Europa</td>
<td>• High Voltage (>100V)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Titan</td>
<td>• High Power (>50 kW@ 1AU)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enceladus</td>
<td>• Low Mass (3X lower than SOP/>250 W/kg)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Long Life (> 15 years)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• High Reliability</td>
<td></td>
</tr>
</tbody>
</table>
Solar Cell Efficiency Improvements

- **Si n/p cells**: 1970

- **Dual Use Science 29% demonstrated**: 1970
- **4-J Theoretical limit**: 1970

Goals

- **Hi Eff Si**: Goal: 115-130 W/kg
 - 475W/m2
 - < $500/W
- **Thin-film cells**: Goal: 200-450 W/kg
 - < $100/W

- **Thin-film submodules**: ~ 1 sq ft
Overview of SOP Triple-Junction Solar Cells

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Azur Space</th>
<th>SolAero Technologies</th>
<th>Spectrolab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer’s designation</td>
<td>3G30C</td>
<td>ZTJ</td>
<td>XTJ-prime</td>
</tr>
<tr>
<td>Efficiency at 28 deg C, AM0¹</td>
<td>29.8%</td>
<td>29.5%</td>
<td>30.7%</td>
</tr>
<tr>
<td>Voltage at maximum power, 28 deg C, AM0 (V)</td>
<td>2.41</td>
<td>2.41</td>
<td>2.39</td>
</tr>
<tr>
<td>Typical areal mass density (mg/cm²)</td>
<td>86</td>
<td>84</td>
<td>84</td>
</tr>
<tr>
<td>Temperature coefficient at 28 deg C, un-irradiated</td>
<td>-0.23%</td>
<td>-0.22%</td>
<td>-0.22%</td>
</tr>
<tr>
<td>Typical cell thickness (µm)</td>
<td>150</td>
<td>140</td>
<td>140</td>
</tr>
<tr>
<td>Normalized maximum power degradation at</td>
<td>Not reported</td>
<td>0.85</td>
<td>0.85</td>
</tr>
<tr>
<td>1E15 1 MeV e/cm² per AlAA-S111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normalized maximum power degradation at</td>
<td>0.9</td>
<td>Not reported</td>
<td>0.87</td>
</tr>
<tr>
<td>1E15 1 MeV e/cm² per ECSS-ET-20-08C³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar absorptance</td>
<td>0.91</td>
<td>0.92</td>
<td>0.88</td>
</tr>
</tbody>
</table>

¹Reported efficiencies assume a solar intensity of 135.3 mW/cm².

²Values represent Ge wafer thickness. Azur Space and Spectrolab have offered cell thickness down to 80 mm; 140-150 mm has been the standard in flight production.

³The ECSS test standard includes photon and temperature annealing subsequent to irradiation.

- Current cells provide ≈30% efficiency at beginning-of-life, AM0
- Minor variations in voltage, current, radiation degradation and thermal properties between different manufacturers (Temperature annealing not practicable for cells under LILT conditions.)
Overview of State-of-Practice Solar Arrays

- **Body mounted array** – installed directly on body of spacecraft or platform
 - No sun-tracking mechanisms
- **Deployable rigid array** – rigid panels stowed for launch and unfolded on orbit
 - Panel structure is typically honeycomb sandwich with composite face-sheets
 - Sun-tracking in one or two axes
- **Deployable flexible array** – flexible blanket deployed by an extensible structure
 - Flexible fold-out array: blanket is folded when stowed
 - Flexible roll-out array: blanket is rolled on a mandrel when stowed
- **Combination of body mounted and deployable**, ex. SMAP, MER Rovers
- **Specialized versions of all three types include**
 - Electrostatically clean arrays – prevent accumulation of electric charge on array surfaces
 - High temperature arrays – survive high irradiance for missions close to the sun

Summary of Current Array State-of-Practice

<table>
<thead>
<tr>
<th>Array technology</th>
<th>Maximum power at 1 AU (current state-of-practice), approximate*</th>
<th>Specific power at 1 AU, BOL (W/kg)**</th>
<th>Areal power density (W/m²)**</th>
<th>TRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body-mounted array</td>
<td>2 kW</td>
<td>N/A</td>
<td>314</td>
<td>9</td>
</tr>
<tr>
<td>Deployable rigid array</td>
<td>25 kW</td>
<td>80</td>
<td>330</td>
<td>9</td>
</tr>
<tr>
<td>Flexible fold-out array</td>
<td>120 kW</td>
<td>150</td>
<td>338</td>
<td>9</td>
</tr>
<tr>
<td>Flexible roll-out array</td>
<td>25 kW</td>
<td>150</td>
<td>338</td>
<td>7</td>
</tr>
</tbody>
</table>

*Based on demonstrated capability
**Assuming all arrays have SoP triple junction cells
Future PSD Mission Needs vs SOP Capabilities

<table>
<thead>
<tr>
<th>Type of PSD Missions</th>
<th>Future Mission Needs</th>
<th>SOP Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission General Needs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Missions</td>
<td>High Efficiency Solar Cells (~38%)</td>
<td>30%</td>
</tr>
<tr>
<td></td>
<td>Low Mass Arrays (> 250 W/kg)</td>
<td>150 W/kg</td>
</tr>
<tr>
<td>Mission Specific Needs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outer Planet Missions</td>
<td>LILT Capability up to 10 AU</td>
<td>LILT capability up to 5.5 AU</td>
</tr>
<tr>
<td>Solar Electric Propulsion</td>
<td>High Voltage, High Power Arrays (300V, 100 kW)</td>
<td>100 V & < 30 kW</td>
</tr>
<tr>
<td>Missions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Future planetary science missions require PV power systems that are mass and volume efficient have long life and operate under extreme environments.
- SOP PV systems are heavy and have limited operational capabilities at extreme environments.
Advanced Cell Technology Table

<table>
<thead>
<tr>
<th>Cell technology</th>
<th>Potential Capability</th>
<th>Status</th>
<th>Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverted metamorphic</td>
<td>36-37%</td>
<td>34-35% demonstrated in lab cells</td>
<td>Achieving cost parity</td>
</tr>
<tr>
<td>Dilute nitride</td>
<td>36-37%</td>
<td>30-31% demonstrated in lab cells</td>
<td>Volume manufacturability</td>
</tr>
<tr>
<td>Upright metamorphic</td>
<td>36-37%</td>
<td>29-30% demonstrated in lab cells</td>
<td>Material quality in high bandgap subcells</td>
</tr>
<tr>
<td>Semiconductor Wafer bonding</td>
<td>36-37%</td>
<td>34-35% demonstrated in lab cells</td>
<td>Achieving cost parity</td>
</tr>
<tr>
<td>Near-IR absorbers</td>
<td>36-37%</td>
<td>26-27% demonstrated in lab cells</td>
<td>Performance improvement over SoP</td>
</tr>
</tbody>
</table>
Developing Solar Array Technology

Flexible arrays

<table>
<thead>
<tr>
<th>Solar Array</th>
<th>Manufacturer</th>
<th>Type</th>
<th>Key features</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2100 spacecraft</td>
<td>Lockheed Martin</td>
<td>Flexible fold-out</td>
<td>Based on heritage ISS solar arrays</td>
<td>In development for flight programs</td>
</tr>
<tr>
<td>Composite Beam Roll-Up Solar Array (COBRA)</td>
<td>SolAero</td>
<td>Flexible roll-out, circular</td>
<td>Extends diameter beyond Ultraflex design. Intended to reach >100 kW capability.</td>
<td>Demonstrated deployment >10 m diameter in ground test.</td>
</tr>
<tr>
<td>Mega-Rosa</td>
<td>Deployable Space Systems (DSS)</td>
<td>Flexible roll-out</td>
<td>Deployment of multiple ROSAs from a central spine. Intended to reach >100 kW capability.</td>
<td>Deployment mechanism concept demonstrated in ground test.</td>
</tr>
</tbody>
</table>

- Flexible array development is continuing, focused on lower mass and higher power
- Goals are 500 W/kg specific power and 80 kW/m³ stowage at BOL, 1 AU
Specific Power vs Distance from Sun

- SoP arrays provide higher specific power than MMRTGs at Jupiter
- Advanced arrays are could reach the specific power of MMRTGs at Saturn
Key Findings

• Solar power systems have been used to power a wide range of planetary science missions
 – 0.3 AU to 5.5 AU
 – Mars surface, Jupiter, Mercury, Asteroid
• Future planetary science missions have unique solar power system needs
 – High Power Solar Arrays (>100 kW) for solar electric propulsion missions (outer planet & asteroid)
 – High Efficiency Solar Cells (> 37%) for small spacecraft planetary missions
 – High Specific Power (> 4 W/kg at 10 AU) & LILT capable (4-10 AU) Solar Arrays for outer planetary missions
• SOP PV systems have limited operational capabilities at extreme environments.
 – Low solar intensities and low temperature environments of outer planets
 – High temperature, high/low solar intensity and corrosive environments of Venus
 – Dusty Mars environments
• Advanced solar cells and arrays are under development at several companies and universities with support from DOD and private funding
 – Cell Technologies (32-36%): 4-5 J cells, Inverted metamorphic, Dilute nitride, Upright metamorphic, Wafer bonding
 – Array Technologies (150-300 W/kg): Flexible fold-out, Flexible roll-out and Concentrator
• No NASA significant investments in the area of advanced space solar cells and arrays
 – Some limited investments are in the area high power arrays and LILT solar cells.
General Recommendations

• Targeted investments should be made in the specific solar cell and array technologies needed to withstand the unique planetary environments.

• Partnerships with HEOMD and STMD and/or other government agencies such as DoE and DoD (AFRL, Aerospace Corporation, NRL, and ARL) should be established and maintained to leverage/tailor the development of advanced cell and array technologies to meet future planetary science mission needs.

• Existing infrastructure for PV technology development, testing and qualification at various NASA Centers should be upgraded to support future planetary science missions, as needed.
Specific Recommendations

• Develop high power (>100 kW) and low mass (200–250 W/kg) solar arrays for future solar electric propulsion missions operable up to 10 AU (for outer planet missions).

• Develop higher efficiency LILT solar cells and low mass, radiation resistant arrays for orbital missions to Jupiter, Saturn, and Ocean Worlds (Europa, Titan, etc.).

• Develop LIHT cells and arrays tolerant of the sulfurous environment required for Venus aerial and surface missions.

• Develop solar cells tuned to the Mars solar spectrum and solar arrays with dust mitigation capability for future Mars surface missions.

• Leverage the DoD investment in higher efficiency solar cells (~38%) and array technologies to enhance next decadal planetary space science missions.
Solar Powered PSD Missions

Juno

Ongoing

SEP stage for Uranus/Neptune missions

Near Future

Mission Concepts

Titan Saturn System Mission Concept (2011)
Acknowledgements

This work presented here was carried out at the Jet Propulsion Laboratory, California Institute of Technology under a contract with National Aeronautics and Space Administration.

© 2017 California Institute of Technology. Government sponsorship acknowledged
Backup
Solar Arrays on NASA Planetary Science Missions

Launches since FY2000

<table>
<thead>
<tr>
<th>Mission class</th>
<th>Mission</th>
<th>Destination</th>
<th>Launch date</th>
<th>Solar cell technology</th>
<th>Solar array technology</th>
<th>Power capability at 1 AU (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer planets</td>
<td>Juno</td>
<td>Jupiter</td>
<td>5-Aug-11</td>
<td>Triple junction</td>
<td>Deployable rigid</td>
<td>14000</td>
</tr>
<tr>
<td>Inner planets</td>
<td>Messenger</td>
<td>Mercury</td>
<td>3-Aug-04</td>
<td>Triple junction</td>
<td>Deployable rigid</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td>LCROSS</td>
<td>Moon</td>
<td>18-Jun-09</td>
<td>Triple junction</td>
<td>Body-mounted</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>Lunar Reconnaissance Orbiter</td>
<td>Moon</td>
<td>18-Jun-09</td>
<td>Triple junction</td>
<td>Deployable rigid</td>
<td>1850</td>
</tr>
<tr>
<td></td>
<td>Grail</td>
<td>Moon</td>
<td>10-Sep-11</td>
<td>Triple junction</td>
<td>Deployable rigid</td>
<td>763</td>
</tr>
<tr>
<td></td>
<td>LADEE</td>
<td>Moon</td>
<td>6-Sep-13</td>
<td>Triple junction</td>
<td>Body-mounted</td>
<td>295</td>
</tr>
<tr>
<td>Mars</td>
<td>Mars Odyssey</td>
<td>Mars</td>
<td>7-Apr-01</td>
<td>GaAs/Ge</td>
<td>Deployable rigid</td>
<td>2092</td>
</tr>
<tr>
<td></td>
<td>Mars Exploration Rover (2)</td>
<td>Mars surface</td>
<td>10-Jun-03/7-Jul-03</td>
<td>Triple junction</td>
<td>Body-mounted</td>
<td>390</td>
</tr>
<tr>
<td></td>
<td>Mars Reconnaissance Orbiter</td>
<td>Mars</td>
<td>12-Aug-05</td>
<td>Triple junction</td>
<td>Deployable rigid</td>
<td>6000</td>
</tr>
<tr>
<td></td>
<td>Phoenix</td>
<td>Mars surface</td>
<td>4-Aug-07</td>
<td>Triple junction</td>
<td>Ultraflex</td>
<td>1255</td>
</tr>
<tr>
<td></td>
<td>MAVEN</td>
<td>Mars</td>
<td>18-Nov-13</td>
<td>Triple junction</td>
<td>Deployable rigid</td>
<td>3165</td>
</tr>
<tr>
<td>Asteroids/comets</td>
<td>Deep impact/EPOXI</td>
<td>Tempel-1/Hartley-2</td>
<td>12-Jan-05</td>
<td></td>
<td>Body-mounted</td>
<td>620</td>
</tr>
<tr>
<td></td>
<td>Dawn (with solar electric propulsion)</td>
<td>Vesta/Ceres</td>
<td>27-Sep-07</td>
<td>Triple junction</td>
<td>Deployable rigid</td>
<td>10300</td>
</tr>
<tr>
<td></td>
<td>OSIRIX-REx</td>
<td>Bennu</td>
<td>8-Sep-16</td>
<td>Triple junction</td>
<td>Deployable rigid</td>
<td>3000</td>
</tr>
</tbody>
</table>

- Vast majority of missions since FY2000 utilized triple junction solar cells on deployable, rigid arrays
Advanced Solar Cell Technology
Overview

Bandgap optimization for high AM0 efficiency
• Inverted metamorphic
• Dilute nitride
• Upright metamorphic
• Wafer bonding
• Near-IR absorbers

Improved operation in special environments
• Low irradiance low temperature
• High temperature
• Surface spectra
• Corrosive atmosphere
• Lightweight flexible
• High radiation
PV Technology Needs of Next Decadal Solar Electric Propulsion Missions

<table>
<thead>
<tr>
<th>Solar Cell & Array Characteristics</th>
<th>Past</th>
<th>Present</th>
<th>Next Decadal Needs</th>
</tr>
</thead>
<tbody>
<tr>
<td>High voltage</td>
<td></td>
<td></td>
<td>300V</td>
</tr>
<tr>
<td>Power (kW)</td>
<td>2.5</td>
<td>10-20</td>
<td>50-200</td>
</tr>
<tr>
<td>Specific Power (W/kg)</td>
<td>50-70</td>
<td>80-110</td>
<td>>150</td>
</tr>
<tr>
<td>Stowage Volume (kW/m³)</td>
<td>~3-10</td>
<td>>30</td>
<td>>40</td>
</tr>
<tr>
<td>LILT Performance</td>
<td>Uncertain behavior under LILT conditions</td>
<td>Uncertain behavior under LILT conditions</td>
<td>LILT Capability needed (> 2.5 AU)</td>
</tr>
<tr>
<td>Cost $M/ kW</td>
<td>1-2</td>
<td>1.0</td>
<td>0.3-0.5</td>
</tr>
<tr>
<td>Other factors:</td>
<td>Complex deployment system</td>
<td>Simpler and reliable deployment system</td>
<td>Simplest and most reliable deployment system</td>
</tr>
</tbody>
</table>
Solar Powered PSD Missions

- Mars Odyssey
- Mars Reconnaissance Orbiter
- Mars Pathfinder
- Messenger
- Maven
- Grail
- Mars Pathfinder
- Stardust-NExT
- OSIRIS-REx
- Juno
- Deep Impact
- Dawn
- Genesis
- Meridiani Planum
Improved Operation in Special Environments
Low Irradiance Low Temperature (LILT) Conditions

LILT = low irradiance low temperature (e.g. Jupiter 5.5AU -140°C, Saturn 9.5AU -165°C)
LIRT = low irradiance room temperature, current practice for screening and binning
SoP cells intended for LILT applications

• Device modifications needed to eliminate mechanisms that limit LILT performance,
 using 1 AU-optimized SoP or advanced cells as starting point
• Also, screening yield improvements for qualitative cell-build cost reductions
• TRL = 4 for SoP-based, 2 for advanced cells
• Remaining challenge = statistical significance, advanced cells
Summary of Findings

• Several types of advanced solar cells are under development at several companies and universities with support from DOD and private funding
 • 4-5 J cells, Inverted metamorphic, Dilute nitride, Upright metamorphic, Wafer bonding
• Significant improvement in solar cell performance is envisioned
 • Near-term: > 33% efficient
 • Mid– to Far-Term: > 37% efficient

• Several types of advanced solar arrays are under development with support from DOD and private funding
 • Flexible fold-out, Flexible roll-out, Concentrator

• Major advances in Solar Array Performance are envisioned
 • Near-term: 150-200 W/kg
 • Mid- to Far-term: 200-250 W/kg

• The biggest technology investments are mostly from DOD
 • Currently there is limited NASA funding in high power arrays and LILT solar cells
• NASA needs to work with DOD to advance and tailor advanced PV technologies for future planetary science missions
Developing Solar Array Technology

Concentrator arrays

<table>
<thead>
<tr>
<th>Reflective Concentrators</th>
<th>Refractive Concentrators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Saver Solar Array</td>
<td>SOLAROSA</td>
</tr>
<tr>
<td>Manufacturer: Orbital ATK</td>
<td>Manufacturer: DSS</td>
</tr>
<tr>
<td>Description: reflective ~2X concentrator</td>
<td>Description: Stretched lens on flexible blanket</td>
</tr>
<tr>
<td>Key features: Focused on cost reduction</td>
<td>Key features: Incorporates Fresnel lens into ROSA</td>
</tr>
<tr>
<td>Status: Flight experiment in orbit</td>
<td></td>
</tr>
</tbody>
</table>

Flexible Array Concentrator Technology (FACT)

Manufacturer: DSS

Description: Incorporates reflective concentrator into ROSA

- Research and development has been performed on multiple technologies that utilize concentrated sunlight.