Planetary Mission Concept Study

Pluto Orbiter and Kuiper Belt Exploration Mission

PI Carly Howett, DPI Stuart Robbins
H. Elliott, C. Ernest, A. Hendrix, B. Holler,
W. McKinnon, S. Porter, S. Protopapa,
J. Radebaugh, K. Singer, J. Spencer,
A. Stern, A. Thodey, O.J. Tucker,
A. Verbiscer, R. Wilson & L. Young,
Mission Overview

• Mission Level: Flagship

• Payload: Expanded from New Horizons

• Trajectory:
 • Direct to Pluto with Jupiter flyby.
 • Orbit through the Pluto-Charon system for ≈2 Earth years.
 • Primarily uses Charon as trajectory maneuvers (very similar to Cassini at Saturn).
 • Use Charon + burn to break orbit.
 • Trajectory to several different KBOs.
 • Possibility of orbiting another Dwarf Planet.
Motivation

- Building on the questions raised from the New Horizons encounter
- *Numerous* community documents recommend this or something similar:
 - CAPS suggested “a Pluto system orbiter and Centaur and/or Kuiper belt object flybys” are important follow-on missions in the next planetary science decadal survey (CAPS, 2017).
 - Roadmap to Ocean Worlds (ROW) recommends that “mission studies should be performed to address technology advances enhancing exploration of the Kuiper belt or a return to Pluto with an orbiter” (Hendrix et al., 2019).
Science Questions

• Is Pluto an ocean world?
• What is the history of the Pluto system?
• What is the diversity of the Kuiper Belt?
Science Questions

#1 Is Pluto an ocean world?

- What is the evidence for a subsurface ocean on Pluto?
- Are Pluto (and Charon) fully differentiated?
- What is Pluto's internal heat budget?
- What is the extent and style of current, internally-derived surface activity (including the more coarsely imaged hemisphere and winter areas)?
Science Questions

#2 What is the history of the Pluto system?

• What are the relative ages and geologic processes acting on different terrains?

• What is the origin and evolution of Pluto's volatiles (surface and atmospheric)?

• What constraints do the small satellites place on the evolution of the system?
Science Questions

#3 What is the diversity of the Kuiper Belt?

- How do the surface properties and compositions of KBOs vary, and how do they constrain the giant planet migration models?

- What is the cratering record on visited (to-be visited) KBOs, and how does it inform the Kuiper Belt's size-frequency distribution, and how does that constrain formation and evolution models of KBOs?

- What can the binary fraction, density, and shapes of KBOs tell us about their formation and the collisional environment in the primordial Kuiper Belt?

- [What is the intrinsic magnetic field strength and overall magnetic field configuration around KBOs?]
Nominal Trajectory

- Launch: 2027
- Cruise: 12 years direct to Pluto**
- Arrival in Pluto system: 2039
- Tour Pluto system: 2039-2041
- Break Pluto-system orbit: 2041
- Post-Pluto cruise to next (TBD) target:

<table>
<thead>
<tr>
<th>KBO</th>
<th>(\Delta v) (km/s)</th>
<th>Flyby Velocity (km/s)</th>
<th>Secondaries</th>
<th>D (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ixion *</td>
<td>3.06</td>
<td>3.76</td>
<td>1</td>
<td>617</td>
</tr>
<tr>
<td>2017 OF(_{69})*</td>
<td>4.76</td>
<td>4.05</td>
<td>2</td>
<td>533</td>
</tr>
<tr>
<td>Dziewanna</td>
<td>5.00</td>
<td>7.10</td>
<td>0</td>
<td>470</td>
</tr>
<tr>
<td>Quaoar</td>
<td>5.69</td>
<td>5.35</td>
<td>3</td>
<td>1110</td>
</tr>
<tr>
<td>2003 OP(_{32})</td>
<td>6.31</td>
<td>6.94</td>
<td>1</td>
<td>230</td>
</tr>
<tr>
<td>2010 RF(_{43})</td>
<td>6.47</td>
<td>7.95</td>
<td>1</td>
<td>636</td>
</tr>
<tr>
<td>2002 MS(_{4})</td>
<td>6.57</td>
<td>6.08</td>
<td>5</td>
<td>934</td>
</tr>
<tr>
<td>2007 JH(_{43})</td>
<td>7.52</td>
<td>7.71</td>
<td>1</td>
<td>505</td>
</tr>
<tr>
<td>2010 OO(_{127})</td>
<td>7.54</td>
<td>7.94</td>
<td>0</td>
<td>501</td>
</tr>
<tr>
<td>2010 KZ(_{39})</td>
<td>7.59</td>
<td>7.65</td>
<td>0</td>
<td>666</td>
</tr>
<tr>
<td>2004 PF(_{115})</td>
<td>7.6</td>
<td>7.02</td>
<td>2</td>
<td>406</td>
</tr>
<tr>
<td>2007 JJ(_{43})</td>
<td>7.66</td>
<td>7.00</td>
<td>0</td>
<td>610</td>
</tr>
<tr>
<td>Varda</td>
<td>8.30</td>
<td>8.37</td>
<td>1</td>
<td>717</td>
</tr>
<tr>
<td>2005 RN(_{43})</td>
<td>8.37</td>
<td>7.95</td>
<td>0</td>
<td>679</td>
</tr>
</tbody>
</table>

14 possible post-Pluto targets (non-exhaustive list!)

* Indicates a target that could be orbited, assuming a maximum \(\Delta v\) of <10 km/s

**When proposed, this assumed we had all the propulsion we need. Accounting for existing propulsion, this proposed timeline might be greatly compressed.
Nominal Pluto-System Tour

- 59 Pluto encounters <100,000 km
- Multiple <3,000 km small satellite encounters
- Pluto sub-solar latitude is 56.8° to 55.2° N
 - NH sub-solar lat: 51.5° N
- 25 years after NH, Pluto would have gone through northern southern solstice (2029)
Nominal Pluto-System Tour

Pluto coverage:
- Complete equatorial coverage
- North and south polar coverage

Charon coverage: Global
<table>
<thead>
<tr>
<th>Instrument Capability</th>
<th>Predecessor Instrument</th>
<th>Instrument Heritage</th>
<th>Preliminary Instrument Specs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panchromatic High-Resolution Imager</td>
<td>LORRI</td>
<td>New Horizons, Lucy</td>
<td>(\lambda: 0.35 \text{ to } 0.85 \mu m) (\text{IFOV:} 5.0 \mu \text{rad sq.})</td>
</tr>
<tr>
<td>Color Imaging and Near-Infrared Spectral Coverage</td>
<td>Ralph (MVIC and LEISA)</td>
<td>New Horizons, Lucy, O-Rex</td>
<td>LEISA: (\lambda: 1.0 \text{ to } 5.0 \mu m) (extended from NH LEISA) (\text{IFOV:} 40\mu\text{rad sq}) (\text{MVIC:} \lambda: \text{Panchromatic (0.4 to 0.9 } \mu m) \text{ and five color channels spread between these wavelengths IFOV: 29 } \mu \text{rad sq.})</td>
</tr>
<tr>
<td>UV spectral coverage</td>
<td>Alice</td>
<td>New Horizons, Rosetta, JUICE</td>
<td>(\lambda: 520-1870 \text{ Å}) (\text{FOV:} 0.1^\circ \times 4^\circ \text{airglow slit, } 2^\circ \text{sq. solar occultation channel})</td>
</tr>
<tr>
<td>Thermal-IR coverage</td>
<td>TES</td>
<td>Lucy, MGS, and O-Rex</td>
<td>(\lambda: 6 – 100 \mu m) (\text{IFOV:} <8 \text{mrad diameter})</td>
</tr>
<tr>
<td>Radio Science</td>
<td>REX</td>
<td>New Horizons</td>
<td>Spacecraft telecom system</td>
</tr>
<tr>
<td>Ice Penetrating Radar</td>
<td>REASON</td>
<td>Europa Clipper</td>
<td>Dual frequency: (\text{HF (9 MHz, sounding 1-30 km)}) (\text{VHF (60 MHz, sounding 300 m to 4.5 km)})</td>
</tr>
<tr>
<td>Mass Spec</td>
<td>MASPEX</td>
<td>Europa Clipper</td>
<td>(>1000 \text{amu}) (<1 \text{ppt resolution})</td>
</tr>
<tr>
<td>Laser Altimeter</td>
<td>LOLA</td>
<td>Messenger, LRO, MGS</td>
<td>(\lambda: 1064.3 \text{ nm}) (\text{FOV (of receiver) 400 } \mu \text{rad}) (\text{Timing Resolution 0.5 ns})</td>
</tr>
<tr>
<td>Magnetometer</td>
<td>MAG, MFI</td>
<td>IMAP, MAVEN</td>
<td>(3 \text{nT to } 3000 \text{nT, sampling at } \sim \text{20 s, 1% accuracy})</td>
</tr>
<tr>
<td>Plasma Ion Measurements</td>
<td>SWAP, CODICE</td>
<td>New Horizons, IMAP</td>
<td>(\sim \text{10eV/q to } 100 \text{ keV/q}) (\Delta \text{(m/q)/(m/q)} \leq 1 \text{ions})</td>
</tr>
</tbody>
</table>

Nominal Payload

- Lots of New Horizons heritage
- But also some Europa Clipper, O-Rex, LRO and IMAP heritage too
Science Team Is Currently ...

- Revising science questions, to:
 - Prioritize observations based on those science questions
 - Prioritize instruments and features of a refined trajectory.

Science team is divided into 7 different "theme teams" and each team is working their priorities, which the PI and DPI will combine.
Conclusions

• We will further develop a Flagship mission to return to the Pluto-system and explore the Kuiper Belt.

• Specifically we will develop:
 • Mission trades within the team
 • The tour, payload and our full mission costing with NASA design labs.

• Final report to NASA by June 2020