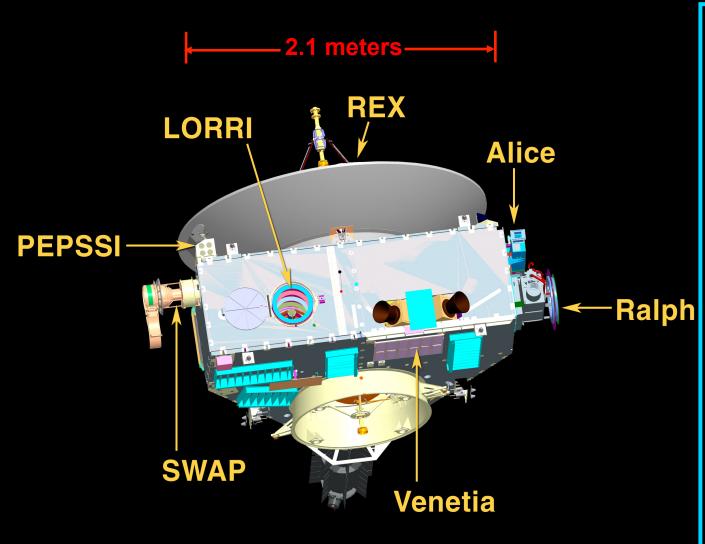

New Horizons Pluto/KB Mission

Status Report for OPAG


PI Alan Stern SwRI

New Horizons/New Frontiers 1

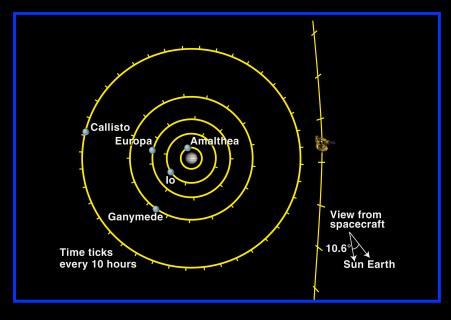
Making an Initial Reconnaissance of The Solar System's "Third Zone"

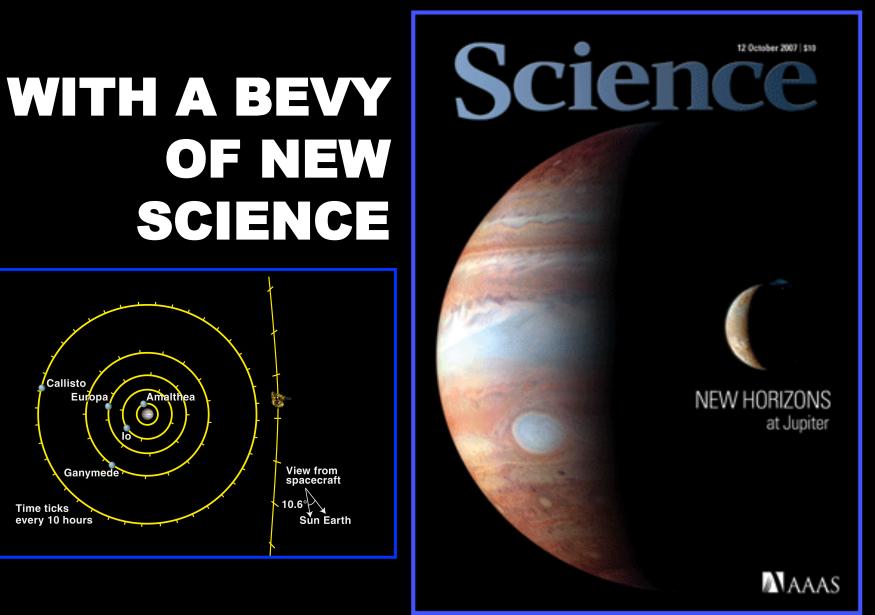
NH SPACECRAFT AND PAYLOAD

Both spacecraft and payload are performing well.

Science Team:

PI: Alan Stern Fran Bagenal **Rick Binzel Bonnie Buratti Andy Cheng Dale Cruikshank Randy Gladstone Will Grundy Dave Hinson Mihaly Horanyi Don Jennings Ivan Linscott Jeff Moore Dave McComas Bill McKinnon Ralph McNutt Scott Murchie Cathy Olkin Carolyn Porco Harold Reitsema Dennis Reuter John Spencer Darrell Strobel Mike Summers Len Tyler Hal Weaver Leslie Young**


HIGH PAYLOAD FUNTIONAL REDUNDANCY

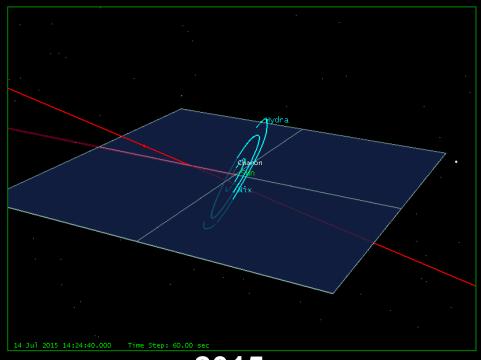

AO Objective		Primary Sensor(s)	Fallback	Supporting	Fidelity of Fallback + Supporting	
Group 1						
Geology/ Geophysics	pan	MVIC pan	LORRI, MVIC color	LEISA	High	
	color	MVIC 4-color	MVIC 2-color	LEISA	High	
Surface composition		LEISA 4 quadrants	LEISA 2 of 4 quadrants	MVIC CH4 mapping	High	
Neutral atmosphere		Both ALICE and REX	Either ALICE or REX	SWAP, PEPSSI, MVIC	Medium	
Group 2						
Surface and atmospheric variability		MVIC, LORRI, LEISA, ALICE, REX	Any of MVIC, LORRI, LEISA, ALICE, or REX	SWAP, PEPSSI	High	
Stereo		MVIC pan	MVIC color, LORRI		High	
Hi-res terminator maps		MVIC pan	MVIC color, LORRI		High	
Hi-res composition maps		LEISA 4 quadrants	LEISA 2 of 4 quadrants	MVIC CH4 mapping	High	
lonosphere/solar wind		Both REX and SWAP	Either REX or SWAP	ALICE	High	
Other atmospheric species		ALICE		SWAP, PEPSSI, [LEISA]	Low	
Charon atmosphere		ALICE		REX , LEISA	High	
Bond albedos		MVIC pan	MVIC color	LORRI, LEISA	Medium	
Surface temperatures		REX and LEISA 4 quadrants	LEISA 2 of 4 quadrants or REX		High	
Group 3						
Energetic particles		PEPSSI		SWAP	Low	
Bulk parameters		MVIC, LORRI, LEISA, REX	Any of MVIC, LORRI, LEISA, or REX		High	
Satellite and ring search		MVIC pan	MVIC color, LORRI	ALICE, REX	High	

^[] implies indirect measurement requiring modeling

JUPITER SUCCESS!

OF NEW SCIENCE

Crossed Uranus orbit New Horizons Full Trajectory - Overhead View 2011-March-18 (Same day MESSENGER entered Mercury orbit) **Crossing Neptune orbit** 2014-August-25 (Exactly 25 years after Voyager 2/Triton) Pluto Closest Approach 2015-July-14 Uranus Jupite (Exactly 50 years after Mariner 4/Mars) Saturn Neptune **New Horizons** Pluto Distance from Earth (AU): 25.69


Distance from Sun (AU): 26.70 Distance from Pluto (AU): 5.89

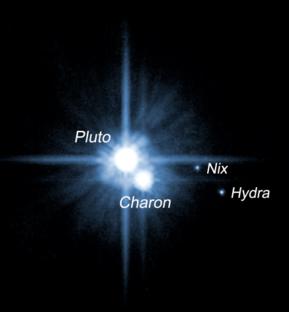
5 Jul 2013 12:00:00 UTC


PLUTO SYSTEM ENCOUNTER: SCIENCE OBJECTIVES

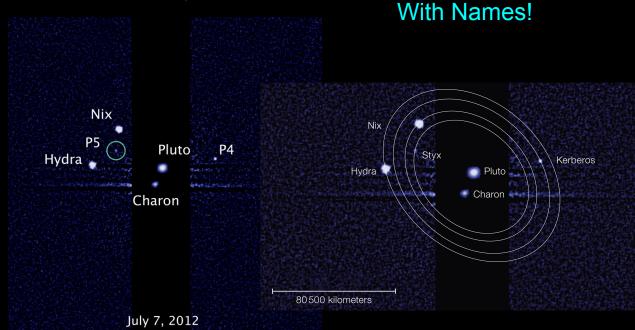
Group 1 Objectives: REQUIRED					
Specified by NASA	Added and ranked by New Horizons Science Team				
Characterize the global geology and morphology of Pluto and Charon					
Map surface composition of Pluto and Charon	None				
Characterize the neutral atmosphere of Pluto and its escape rate					
Group 2 Objectives: STRONGLY DESIRED					
Specified by NASA	Added and ranked by New Horizons Science Team				
Characterize the time variability of Pluto's surface and atmosphere	Composition of dark surfaces on Pluto				
Image Pluto and Charon in Stereo	"Far-side" imaging of Pluto and Charon				
Map the terminators of Pluto and Charon with high resolution	"Far-side" color and composition of Pluto and Charon				
Characterize Pluto's ionosphere and solar wind interaction	High resolution imaging of Nix and Hydra				
Search for neutral species including H, H2, HCN, and CxHy, and other					
hydrocarbons and nitriles in Pluto's upper atmosphere	Composition of Nix and Hydra				
Search for an atmosphere around Charon	Shapes of Nix and Hydra				
Determine bolometric Bond albedos for Pluto and Charon					
Map the surface temperatures of Pluto and Charon					
Group 3 Objectives: DESIRED					
Specified by NASA	Added and ranked by New Horizons Science Team				
Characterize the energetic particle environment of Pluto and Charon	Surface microphysics of Pluto and Charon				
Refine bulk parameters (radii, masses, densities) and orbits of Pluto & Charon	Measure the surface temperatures of Nix and Hydra				
Search for magnetic fields of Pluto and Charon	Measure the phase curve of Nix and Hydra				
Search for additional satellites and rings	Image Nix and Hydra in stereo				
	Education/Public Outreach				

ENCOUNTER GEOMETRY AND NOMENCLATURE

2015


AP - Approach Phase, DP - Departure Phase, NEP - Near Encounter Phase

MISSION STATUS

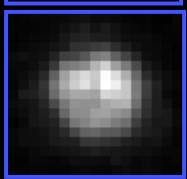

- New Horizons is healthy and remains on track
 - The science objectives should be achieved or exceeded
 - Nix, Hydra, Kerberus (P4), and Styx (P5) added (new discoveries)
 - More data to be collected than originally planned (~7x larger)
 - Robust encounter timeline with built-in redundancy to ensure success
 - Largely complete.
- Encounter Rehearsals Completed
 - Most intense 22 hr flyby segment successfully conducted in May 2012 ("stress test")
 - P-7 to P+2 "Core Sequence" just completed successfully (July 5-14)!
- Hazard Concerns Largely Mitigated (see next slides)
- Conducting intensive search for KBOs that are targetable by New Horizons during extended mission
 - Using large ground based telescopes with Hubble follow-up

PLUTO'S PLETHORA OF SATELLITES: GOOD NEWS AND BAD

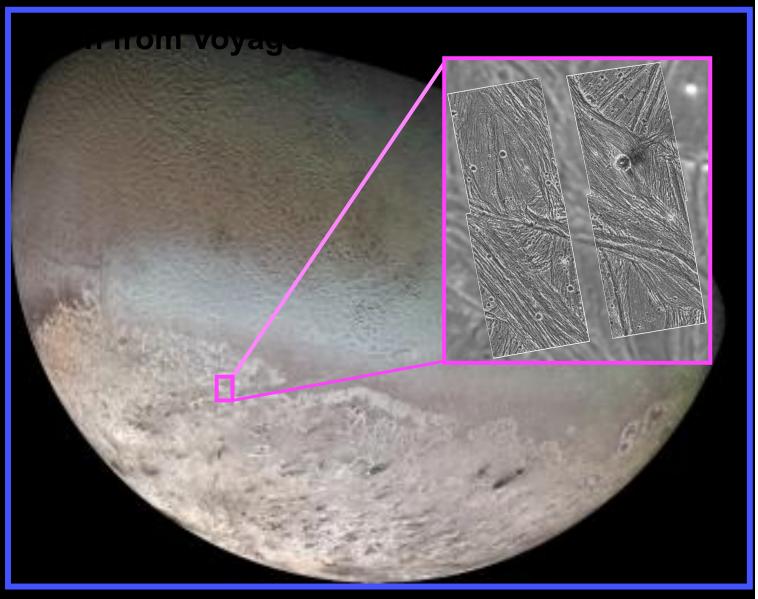
Hubble: May 2005

Hubble: July 2012 Pluto + 5 Moons

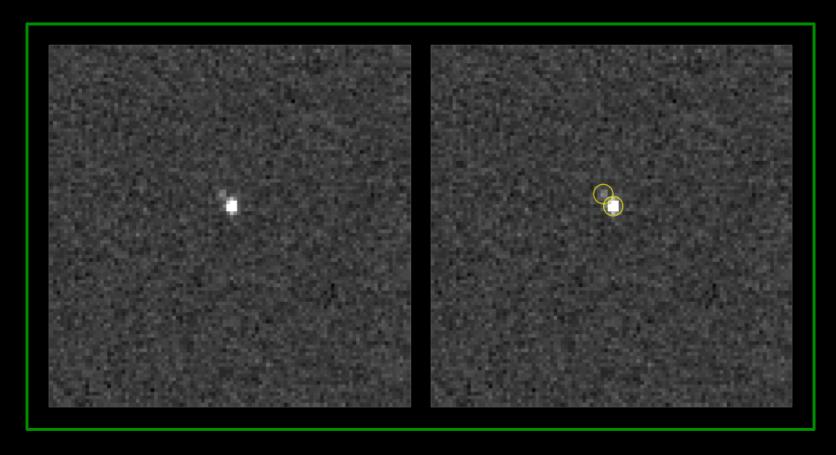
Six for the price of one, but with strings attached. Where there are small satellites, there will be debris. A collision between mm-sized particles and the NH spacecraft moving at ~14 km/s could result in a loss of mission, but we think NH is safe on current trajectory.


Names: P4 = Kerberus, P5 = Styx

CONCERNS


- Impact Hazards Owing to Satellite Ejecta in the System
 - Largely mitigated: Probability of LOM is estimated now at <0.3%
 - Two alternate encounters being planned ("SHBOTs")
- Pluto heliocentric ephemeris error
 - Recent analysis shows systematic error in ephemeris derived from visible light astrometry
 - This is a KBO accessibility (propellant) risk, not a mission risk
 - Plan to use ALMA to measure Pluto's position relative to quasars
 - Reanalysis of Lowell historical plates will also help

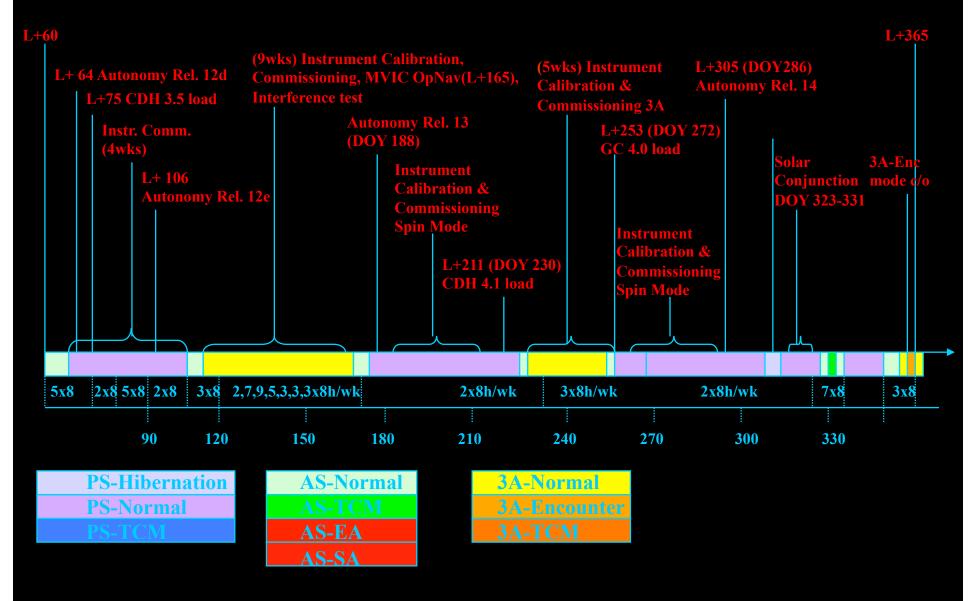
A REVOLUTION IN KNOWLEDGE IS IN STORE

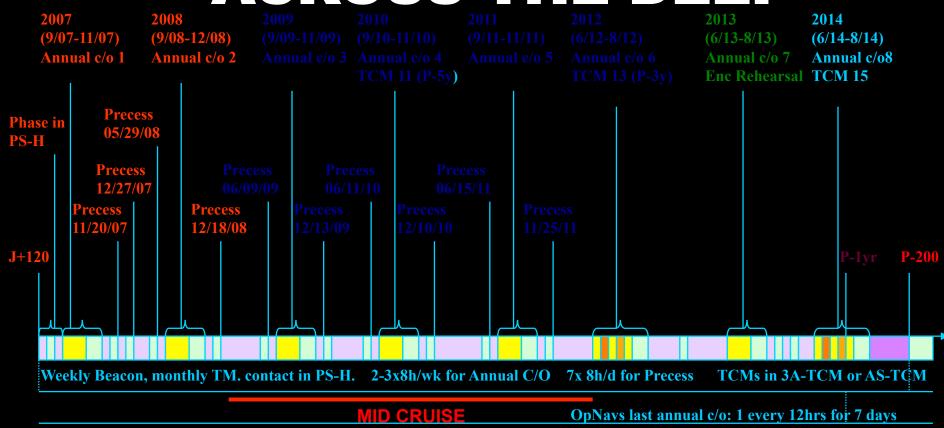


Triton & Pluto
At Best HST
Resolution

TYAN

Charon Detection July 2013


Next Week, At APL

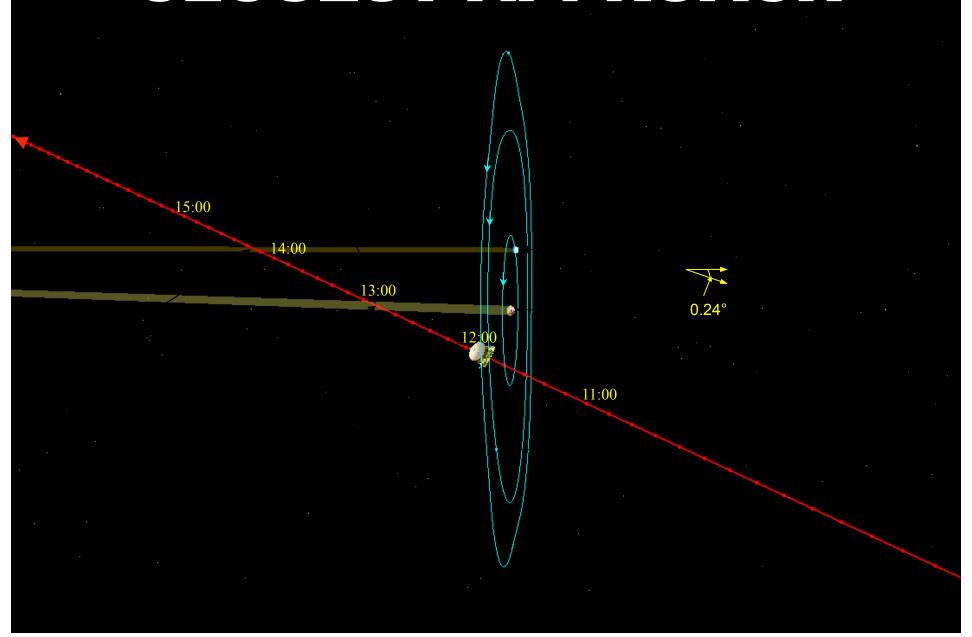

Registration remains open! http://plutoscience.jhuapl.edu

Backups

CRUISE 1: TO JUPITER

CRUISE 2: ACROSS THE DEEP

PS-Hibernation
PS-Normal
PS-TCM


AS-Normal
AS-TCM
AS-EA
AS-SA

3A-Normal 3A-Encounter 3A-TCM

SHBOT TRAJECTORIES

CLOSEST APPROACH

