The Exploration of The Pluto System And The Kuiper Belt

Alan Stern, Principal Investigator
2007-2014: ACROSS THE DEEP

- **2007**
 - (9/07-11/07) Annual c/o #1
 - (9/08-12/08) Precess 05/29/08
- **2008**
 - (9/08-12/08) Precess 12/27/07
 - (7/09-9/09) Precess 12/15/08
- **2009**
 - (7/09-9/09) Precess 12/17/09
 - (5/10-7/10) Precess 11/17/09
- **2010**
 - (5/10-7/10) Precess 01/12/10
 - (5/11-7/11) Precess 01/12/11
 - TCM 11 (P-5y) Ltd Rehearsal 05/20/11
- **2011**
 - (5/11-7/11) Wake-up 01/03/12
 - Lunar Occ 01/21/12
 - Precess 01/24/12
 - Precess 11/12/11
 - TCM 11 (P-5y) Ltd Rehearsal 05/20/11
- **2012**
 - (5/12-7/12) Precess 1/26/13
 - Flt S/W Load
- **2013**
 - (5/13-8/13) Precess 1/14/14
 - Lunar Occ 01/21/12
 - Precess 01/24/12
 - Flt S/W Load
- **2014**
 - (6/14-8/14) Precess 12/07/14
 - Annual c/o #8
 - TCM 15
 - OpNav Campaign 1

Weekly Beacon, monthly TM. contact in PS-H.

- 2-3x8h/wk for Annual C/O
- 7x 8h/d for Precess
- TCMs in 3A-TCM or AS-TCM

OpNavs last annual c/o: 1 every 12hrs for 7 days
NASA-DEFINED MEASUREMENT OBJECTIVES

<table>
<thead>
<tr>
<th>Group 1 Objectives:</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characterize the global geology and morphology of Pluto and Charon</td>
<td></td>
</tr>
<tr>
<td>Map surface composition of Pluto and Charon</td>
<td></td>
</tr>
<tr>
<td>Characterize the neutral atmosphere of Pluto and its escape rate</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group 2 Objectives:</th>
<th>Important</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characterize the time variability of Pluto's surface and atmosphere</td>
<td></td>
</tr>
<tr>
<td>Image Pluto and Charon in stereo</td>
<td></td>
</tr>
<tr>
<td>Map the terminators of Pluto and Charon with high resolution</td>
<td></td>
</tr>
<tr>
<td>Map the composition of selected areas of Pluto & Charon at high resolution</td>
<td></td>
</tr>
<tr>
<td>Characterize Pluto's ionosphere and solar wind interaction</td>
<td></td>
</tr>
<tr>
<td>Search for neutral species including H, H₂, HCN, and CₓHᵧ, and other hydrocarbons and nitriles in Pluto's upper atmosphere</td>
<td></td>
</tr>
<tr>
<td>Search for an atmosphere around Charon</td>
<td></td>
</tr>
<tr>
<td>Determine bolometric Bond albedos for Pluto and Charon</td>
<td></td>
</tr>
<tr>
<td>Map the surface temperatures of Pluto and Charon</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group 3 Objectives:</th>
<th>Desired</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characterize the energetic particle environment of Pluto and Charon</td>
<td></td>
</tr>
<tr>
<td>Refine bulk parameters (radii, masses, densities) and orbits of Pluto & Charon</td>
<td></td>
</tr>
<tr>
<td>Search for magnetic fields of Pluto and Charon</td>
<td></td>
</tr>
<tr>
<td>Search for additional satellites and rings</td>
<td></td>
</tr>
</tbody>
</table>
REX—Radio science & radiometry
RALPH—VIS/IR Pan/Color imaging & spectroscopy
ALICE—UV imaging spectroscopy
LORRI—High-resolution imager
SWAP—KeV plasma spectrometer
PEPSSI—MeV plasma spectrometer
SDC—Student Dust Counter
Mission Status

- **Spacecraft**: Healthy
- **Payload**: Healthy, Well Calibrated
- **Trajectory**: On Course
- **Fuel**: 1.3x Originally Expected for KBO EM
- **Final Active Checkout**: In Progress
- **Final Hibernation**: Late August—Early December
- **Encounter Begins**: 15 January
ACO-8 Highlights

✓ Spacecraft Checkout
✓ Payload Checkout and Selected Calibrations
✓ Encounter Final Autonomy/Fault Protection Load
✓ Trajectory Correction Completed 15 July 2014
✓ Neptune EPO Imaging Complete
✓ First Pluto OpNav Campaign (Derivative Science)

❌ Heliospheric Dust, Lya, and Plasma Measurements
Encounter Overview

- Encounter Runs January to July (Soon!)
- Downlink Lasts July ‘15 to October ‘16
- Better Than HST: ~1 May
- Intensive Pluto Science: June-July; C/A 14 July
- Hazard Imaging: May-July

Note: AP - Approach Phase, DP - Departure Phase, NEP - Near Encounter Phase
Overview of Approach Science

Approach Phase 1
Atm Escape: Ambient Plasma
OpNav/Orbits/Masses
Surface Albedo Variability
‘High’ Phase Photometry

LORRI, SWAP, SDC, PEPSSI

Approach Phase 2
AP1 Plus:
Surface Color
Variability Studies
Satellite/Ring Search

RALPH, ALICE Too

Approach Phase 3 (AP3): P-21 to P-1
AP2 Plus:
Atm. Escape: Pickup Ions & Bow Shock
Surface Composition Variability
Airglow Variability
Clouds/Haze/Winds from Imaging
Pan, Color, and Composition Maps
All But REX

Charon Detection by New Horizons 2013.5
Latest Approach Imaging

2014 July 21 LORRI Imaging

Full Field

Zoom on Pluto-Charon
Encounter Highlights

- Approximately 6 months of encounter science at Pluto
- Exceed Hubble resolution for ~3 months
- Map entire sunlit areas of Pluto and Charon
- Make global composition maps of Pluto and Charon
- Map Pluto and Charon surface temperatures
- Explore Pluto’s atmosphere: Measure escape rate, pressure and temperature profile, composition; search for hazes
- Improve interior structure models; address if either Pluto or Charon is differentiated
- Obtain high resolution images of Nix and Hydra
- Make compositional measurements of Nix and Hydra
- Search for additional Pluto-system and rings

The most exciting discoveries will likely be the ones not anticipated
What Will We Find?
Predictions Are Risky
Predictions Are Risky
Surprises Surely Await
July 14, 2015 2:00 (P-10h)

Highest Resolution 70m/px
Then on to KBOs 2017-2021
April 2014: Submitted 160-orbit regular proposal, including use of 40 orbits of Director’s Discretionary (DD) time offered by STScI

- Proposed to use the DD time for a pilot study to demonstrate feasibility by finding at least 2 cold classical KBOs in order to qualify for the rest of the search time
- Messages of support from OPAG, SBAG—Thank You!

June 13th 2014: Proposal accepted
- June 16th: Pilot observations start
- June 28th: 2 pilot program KBOs discovered

- June 30th: Full program approved
- July 7th: Full program started
- July 22nd: 100 orbits completed
Search Design

- 83 WFC3 total
- Track at the rate of a hypothetical reference KBO near the center of each field
- Two 1-orbit visits per field, usually separated by 3 hours
- Images processed with 1-2 days of receipt to reveal moving objects at the full range of possible rates for cold classical KBOs.

Section of single image

5 images star-subtracted, robustly stacked at KBO rate (same stretch)
As of July 18th
- 96% of search observations scheduled (through August 3rd), Limiting Mag R-27.5
- Several detections
- Expect ~20% of discoveries to be targetable by NH

First follow-up observations of detected KBOs scheduled August 2-3 to determine targetability.

Should complete both the survey and initial follow-up by September.
For More Information

- Visit http://pluto.jhuapl.edu
- Read SSR 2008, V140, or Young & Stern 2010, IAU Symp. 263, 305.
- Ask me or any CoI.
For More Information

- Visit http://pluto.jhuapl.edu
- Read SSR 2008, V140, or Young & Stern 2010, IAU Symp. 263, 305.
- Ask me or any CoI.

PI: Alan Stern
Fran Bagenal
Rick Binzel
Marc Buie
Bonnie Buratti
Andy Cheng
Dale Cruikshank
Heather Elliot
Randy Gladstone
Will Grundy
Matt Hill
Dave Hinson
Mihaly Horanyi
Don Jennings
Ivan Linscott
Jeff Moore
Dave McComas
Bill McKinnon
Ralph McNutt
Scott Murchie
Cathy Olkin
Joel Parker
Carolyn Porco
Harold Reitsema
Dennis Reuter
Mark Showalter
John Spencer
Darrell Strobel
Mike Summers
Len Tyler
Hal Weaver
Leslie Young
My other vehicle is on its way to Pluto
Backup Charts
Summary of Best Resolution of Pluto and its 5 moons

<table>
<thead>
<tr>
<th></th>
<th>Panchromatic</th>
<th>Color</th>
<th>Infrared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pluto</td>
<td>0.46 km/pixel hemispheric</td>
<td>0.64 km/pixel</td>
<td>6.0 km/pixel hemispheric</td>
</tr>
<tr>
<td></td>
<td>0.09 km/pixel regional</td>
<td></td>
<td>2.7 km/pixel local</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charon</td>
<td>0.61 km/pixel hemispheric</td>
<td>1.40 km/pixel</td>
<td>8.4 km/pixel hemispheric</td>
</tr>
<tr>
<td></td>
<td>0.15 km/pixel regional</td>
<td></td>
<td>4.7 km/pixel local</td>
</tr>
<tr>
<td>Nix</td>
<td>0.46 km/pixel</td>
<td>1.98 km/pixel</td>
<td>3.6 km/pixel</td>
</tr>
<tr>
<td></td>
<td>0.29 km/pixel possible</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydra</td>
<td>1.14 km/pixel</td>
<td>4.6 km/pixel</td>
<td>14.6 km/pixel</td>
</tr>
<tr>
<td>P4</td>
<td>3.2 km/pix</td>
<td>(44 km/pix)</td>
<td>(24 km/pix)</td>
</tr>
<tr>
<td></td>
<td>2.0 km/pix possible</td>
<td>8 km/pix possible</td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td>3.2 km/pix</td>
<td>8 km/pix</td>
<td>(200 km/pix)</td>
</tr>
</tbody>
</table>

Resolutions in parentheses indicate unresolved targets.
Pluto at Approach

- Sunlit in southern hemisphere & dark in northern cap
- *New Horizons* approaches Pluto from southern hemisphere
- Solar phase angle at approach is 15°
- Pluto makes one rotation every 6.4 Earth days

- **Sub-solar position** (-49.4°, 30.7°)

- **Equator**
- **Prime Meridian**
- **To Spacecraft**
- **Sub-spacecraft position 10 days before C/A**
- **Sun’s Shadow**
- **North Pole**
- **Sun terminator**
- **X**
- **Y**
- **Z**
New Horizons Ground Track on Pluto

at Closest Approach

Sub-solar Position at C/A