A Common Probe Design for Multiple Planetary Destinations

Helen H. Hwang
Entry Systems and Technology Division, NASA Ames Research Center, Moffett Field, CA 94035

Introduction and Background

The Planetary Science Division of the NASA Science Mission Directorate funded a study from October 2017 – June 2018, involving 4 NASA Centers (ARC, GSFC, JPL, and LaRC), to address if a common aeroshell design could be utilized at multiple destinations instead of optimizing a design for a specific mission. If this common design were built with several copies, what efficiencies and risks would be involved?

Study Scope and Assumptions

- Venus, Jupiter, Saturn, Uranus, and Neptune considered as destinations
- Atmospheric probe missions (no large landers at Venus)
- Carrier Spacecraft provides power and telecommunications (details not studied)
- Details of science instrumentation and descent vehicle not studied
- Leverage previous mission designs and high-fidelity analysis; use mid-fidelity tools for design estimates

Interplanetary Trajectories

Assumptions:
- Launch vehicle with current all-chemical capabilities (AV)
- Time of flight < 15 years
- “Shallow” (50-g) and “steep” (150 – 200-g) trajectories for each destination

Entry and Descent Concept of Operations

- Two different scenarios examined:
 - 1 main conical ribbon parachute, 2 m diameter
 - 1 pilot (1 m) + 1 main, sized for each destination
- Both options are feasible, indicating mission design flexibility.

Strawman Payloads

Descent module of 0.75 m diameter estimated to accommodate Tier 1 and Tier 2 science instruments to all destinations

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 1</td>
<td></td>
</tr>
<tr>
<td>Mass Spectrometer</td>
<td>Elemental and isotopic composition, especially noble gases, and trace volatiles</td>
</tr>
<tr>
<td>Atmospheric Structure Instrument (ASI)</td>
<td>Temperature and pressure, especially noble gases, and trace volatiles</td>
</tr>
<tr>
<td>Radios Science Experiment</td>
<td>Atmospheric, composition, and physics of the atmosphere</td>
</tr>
<tr>
<td>Nephelometer</td>
<td>Cloud structure, vertical number density, and characteristics</td>
</tr>
<tr>
<td>Net Flux Radiometer</td>
<td>Net radiative fluxes, thermistor, solar visible</td>
</tr>
<tr>
<td>Tier 2</td>
<td></td>
</tr>
</tbody>
</table>

TPS Sizing

- Aerothermal environments (radiative + convective heating) estimated on the forebody stagnation point using a 3DOF simulation, TRAJ
- 2 forebody materials considered: HEEET and FDCP, sized using FIAT
- Backshell TPS assumed to be PICA: mass estimated based on forebody stagnation point environments
- Common TPS thickness viable for 4 destinations but not Jupiter (heat loads 10x higher)
- TPS mass fraction in-family with historical missions

Entry Systems and Technology Division, NASA Ames Research Center, Moffett Field, CA 94035

Background

Assumptions:
- Estimated 10-100x savings could be realized using a common design
- Leveraging previous design and high-fidelity tools (CFD, structural analysis) for better mass estimates
- Design can alleviate sustainability issues, but introduces new risks:
 - Long term storage and aging of the system
 - Will HEEET and a cyanate ester composite structure age at the same rate when bonded together?
 - Can accelerated aging coupon tests be performed?
- Galileo and Phoenix are data points for ground storage
- Quality of the design across multiple destinations
- Preliminary costing which estimates the non-recurring vs recurring engineering portions indicates that cost savings could be realized by building multiple units at the same time

Assumptions:
- Estimated 10-100x savings could be realized using a common design
- Leveraging previous design and high-fidelity tools (CFD, structural analysis) for better mass estimates
- Design can alleviate sustainability issues, but introduces new risks:
 - Long term storage and aging of the system
 - Will HEEET and a cyanate ester composite structure age at the same rate when bonded together?
 - Can accelerated aging coupon tests be performed?
- Galileo and Phoenix are data points for ground storage
- Quality of the design across multiple destinations
- Preliminary costing which estimates the non-recurring vs recurring engineering portions indicates that cost savings could be realized by building multiple units at the same time

Study Team Members

NASA Ames Research Center
- NASA Goddard Space Flight Center (GSFC)
- NASA Langley Research Center (LaRC)

Jet Propulsion Laboratory (JPL)
- David A. Atkinson
- Bernie J. Binstock
- John O. Elliott
- Mark D. Hofstadter
- Marcus A. Lobbia
- Kim R. Rh

Interplanetary Trajectories

- Venus, Jupiter, Saturn, Uranus, and Neptune considered as destinations
- Atmospheric probe missions (no large landers at Venus)
- Carrier Spacecraft provides power and telecommunications (details not studied)
- Details of science instrumentation and descent vehicle not studied
- Leverage previous mission designs and high-fidelity analysis; use mid-fidelity tools for design estimates

Entry and Descent Concept of Operations

- Two different scenarios examined:
 - 1 main conical ribbon parachute, 2 m diameter
 - 1 pilot (1 m) + 1 main, sized for each destination
- Both options are feasible, indicating mission design flexibility.

Summary and Future Work

- A common atmospheric probe design for Venus, Saturn, Uranus, and Neptune missions is feasible
- Missions to Jupiter should be considered separately due to out-of-family heat loads
- Follow-on activities are recommended:
 - Should a smaller descent module and aeroshell be studied?
 - Higher fidelity tools (CFD, structural analysis, etc) for better mass estimates
 - Better cost estimates
- Final report is in progress, will be submitted to PSD
- Community feedback is desired—what other activities are desired by mission designers?

Contact: helen.hwang@nasa.gov