Europa Clipper Update to OPAG

Bob Pappalardo, Europa Clipper Project Scientist
Barry Goldstein, Europa Clipper Project Manager
Jet Propulsion Laboratory, California Institute of Technology
September 11, 2018
Europa Clipper Science Overview

- **Mission Goal:** Explore Europa to investigate its habitability

- **Level-1 Science Objectives:**
 - **ICE SHELL & OCEAN:** Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange
 - **COMPOSITION:** Understand the habitability of Europa's ocean through composition and chemistry
 - **GEOLOGY:** Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities*
 - **CURRENT ACTIVITY:** Search for and characterize any current activity, notably plumes and thermal anomalies

* "Reconnaissance” for a potential future lander is folded into the Geology objective."
NASA-Selected Europa Clipper Investigations

Europa-UVS
UV Spectrograph
- surface & plume/atmosphere composition

MASPEX
Mass Spectrometer
- sniffing atmospheric composition

SUDA
Dust Analyzer
- surface & plume composition

ICEMAG
Magnetometer
- sensing ocean properties

PIMS
Faraday Cups
- plasma environment

EIS
Narrow-Angle Camera + Wide-Angle Camera
- mapping alien landscape in 3D & color

MISE
IR Spectrometer
- surface chemical fingerprints

E-THEMIS
Thermal Imager
- searching for hot spots

REASON
Ice-Penetrating Radar
- plumbing the ice shell

Phase A Radiation Science Working Group
- radiation environment

Phase A Gravity Science Working Group
- confirming an ocean

Remote Sensing
- green

In Situ
- red
Europa Clipper Project-Level Lifecycle Schedule

Key Project Reviews

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY13</td>
<td>NASA Reviews</td>
<td>9/25/16</td>
</tr>
<tr>
<td>FY14</td>
<td>Project Reviews</td>
<td>1/17</td>
</tr>
<tr>
<td>FY15</td>
<td></td>
<td>8/18</td>
</tr>
<tr>
<td>FY16</td>
<td></td>
<td>11/19</td>
</tr>
<tr>
<td>FY17</td>
<td></td>
<td>11/20</td>
</tr>
<tr>
<td>FY18</td>
<td></td>
<td>10/20</td>
</tr>
<tr>
<td>FY19</td>
<td></td>
<td>12/20</td>
</tr>
<tr>
<td>FY20</td>
<td></td>
<td>5/22</td>
</tr>
<tr>
<td>FY21</td>
<td></td>
<td>5/25</td>
</tr>
<tr>
<td>FY22</td>
<td></td>
<td>6/22</td>
</tr>
<tr>
<td>FY23</td>
<td></td>
<td>6/22</td>
</tr>
</tbody>
</table>

PDR Season
- **Spacecraft**
 - Propulsion Subsystem PDR 6/27-29/17 (GSFC)
 - Propulsion Module PDR 7/24-27/17 (APL)
 - Flight System PDR 10/17-20/17 (JPL)
 - Europa-UVS PDR 11/16-17/17 (SWRI)
 - PIMS PDR 12/6-7/17 (APL)
 - EIS PDR 1/9-11/17 (APL)
 - Solar Array Requirements Review 1/22/18 (JPL)
 - Power PDR 1/23-24/18 (JPL)
 - SUDA PDR 1/30-31/18 (CU)
 - Guidance, Navigation & Control PDR 2/7-9/18 (JPL)
 - Mechanical PDR 2/20-22/18 (JPL)
 - Thermal PDR 2/27-28/18 (JPL)
 - Radio Frequency Module / Telecom PDR 3/14-15/18 (APL)
 - REASON PDR 3/26-27/18 (JPL)

- **Payload**
 - Radiation Monitor System PDR 4/17/18 (APL)
 - E- THEMIS PDR 4/19-20/18 (ASU)
 - MISE PDR 4/24-25/18 (JPL)
 - Avionics PDR 5/7-10/18 (JPL)
 - MASPEX PDR 5/15-16/18 (SWRI)
 - Fault Management PDR 5/21-22/18 (JPL)
 - ICEMAG PDR 5/23-24/18 (JPL)
 - Mag Boom PDR 5/30 - 6/1/18 (JPL)
 - Mission System PDR 6/19-21/18 (JPL)
 - Propulsion Subsystem CDR 6/26-28/18 (GSFC)
 - Project PDR 8/20-24/18 (JPL)
 - Solar Array PDR 9/4-5/18 (Airbus, Leiden)
 - Integrated Wing Review 1/14-16/2018 (JPL)
Europa Clipper Flight System Configuration

Flight System = Spacecraft + Payload

- **Cruise Configuration**
 - 2670 kg FS Dry mass (CBE)
 - 336 Ah Battery (EOM)
 - 102 m² Solar Array area
 - 5.3 TB Downlink capability

Launch Configuration
Europa Clipper Flight System Highlights

Power
- 102 m² Solar array, 339 Ahr Li-Ion batteries,
- Power regulation, switching & distribution

Avionics
- RAD-750 Processor, 512 Gbit non-volatile NAND memory storage,
- Remote electronics unit, 1553 bus, Spacewire i/Fs, flight software

Guidance & Control
- 3-axis control, pointing and slewing for science,
- JOI, maneuvers, RW and RCS control using redundant SRUs, IMUs, & sun sensors, SA control

Propulsion
- Bi-prop system, tanks, lines, 24 engines,

Thermal
- Heat Reclamation System (pumps, lines), radiator, louvers, blankets, heaters,

Science Instruments
- 10 remote sensing and in-situ science instruments hosted & accommodated

Radmon
- Engineering radiation monitor

Telecom
- RF module, antennas, TWTAs, radios
- 2-way X band, Ka-band downlink

Mechanical
- Structures, magboom, sensor deck, vault
Flight System Instrument Accommodation

Deployed spacecraft view

Standard close approach:

vault and sensor deck view
Europa Clipper Instrument Accommodation

• REASON and ICEMAG accommodation details have been ongoing and challenging, with each now converging on excellent solutions:
 – REASON: converging on solutions for ground plane mesh and coax cable configuration consistent with solar array constraints
 – ICEMAG: for scalar vector helium (SVH) sensors, fiber optic cable solution identified to operate at cryogenic temperatures in radiation environment
Key Europa Clipper Mission Scenarios

Launch and Deployment
- 21 day launch period
- Short coast
- Minimize communication gap
- Autonomous detumble, Sun search, solar array deployment
- Nominal completion in < 2 hours

Jupiter Orbit Insertion (JOI)
- Centered at 12.05 Rj Perijove
- 6.5 hour burn, ~860 m/s
- RCS control, JOI attitude achieved @ JOI start – 9 hrs
- X-band, Fanbeam, Tones, 70-m coverage, Dual-Complex
- Solar array fixed

Tour Encounters
- Europa Flyby Period: +/-2 days around closest approach, contains 3 sub-phases:
 - Approach Sub-phase
 - Nadir Sub-phase
 - Departure Sub-phase
- Collect ~80 Gbits data per flyby
- Playback Period: starting at 2 days after C/A to 2 days before the subsequent C/A
Europa Clipper Mission Concept

ETHEMIS
[Day/Night Coverage]

Europa-UVS
[Total Daytime Coverage]

MISE
[Global Daytime Coverage]

Trajectory

EIS
[WAC + NAC, Framing Pan Mono]
"One Team" Philosophy

- The Europa Clipper Science Team is one science team
- Fostering integrated science promotes insights and discovery
- The suite of instruments are our common hardware tools
 - Investigation teams are the acknowledged instrument experts
- Shared tools, planning, and data ensure mutual awareness and visibility
- Multi-investigation analyses coordinated via Thematic Working Groups
- Meetings of the whole science team promote visibility and integration
- Participating scientists are planned for one year before Jupiter arrival
• Built recommendations for the strategic and tactical science planning processes
 – What is the process by which the PSG will generate a strategic plan?
 – What is the process for tactical (encounter-based) planning?

• Discussed circumstances that might suggest deviation from the strategic plan, to help ensure the planning process is robust
 – What is the process by which the strategic plan might be altered, i.e. when new discoveries are made or in response to operations opportunities or challenges?

• Included presentations on other mission examples:
 – MESSENGER: Carolyn Ernst
 – Juno: Candy Hansen
 – Cassini: Bill Kurth
 – MER: Jeff Moore
 – New Horizons: John Spencer
Reconnaissance Focus Group
Co-Chairs: Alfred McEwen (Europa Clipper) & Cynthia Phillips (Europa Lander Study)

- Joint between Europa Clipper science team and Europa Lander study team
 - A co-chair from each group
- First meeting was Sept. 10 (yesterday):
 - Goal: Consider strategies for characterization of areas of interest for a potential lander, concentrating on engineering considerations
 - ~40 in-person attendees from Europa Clipper and Europa Lander Study teams, plus ~15 more on-line
 - All presentation materials and a meeting summary is planned to be posted to a publicly-accessible site, with link will be shared with OPAG