Radioisotope-based Nuclear Power Strategy for Exploration Systems Development

STAIF Nuclear Symposium
February 16, 2006

George Schmidt and Mike Houts
NASA Marshall Space Flight Center
U.S. Radioisotope Space Missions

RTGs used successfully on 23 spacecraft since 1961
- 8 Planetary (Pioneer, Voyager, Galileo, Ulysses, Cassini, New Horizons)
- 8 Earth Orbit (Transit, Nimbus, LES)
- 5 Lunar Surface (Apollo ALSEP)
- 2 Mars Surface (Viking)
Radioisotope Power Systems (RPS)

- Heat produced from natural alpha (α) particle decay of Plutonium (Pu-238)
 - 87.7-year half-life
- Small portion of heat energy (6%-25%) converted to electricity via passive or dynamic processes
 - Thermoelectric (existing & under development)
 - Stirling (under development)
 - Brayton, TPV, etc. (future candidates)
- Waste heat rejected through radiators – portion can be used for thermal control of spacecraft subsystems
Benefits of RPS

Provides the unique features of nuclear power sources, such as...

- Steady power delivery independent of distance and orientation with respect to sun;
- Operation in shadowed and heavily clouded regions and locations (craters, thick atmospheres);
- Power generation in extreme environments (Venus, Titan);
- Operation in high-radiation environments (Jovian space);
- Long duration operation (≥10 years);

Plus, the added advantages of...

- Scalability to very low power levels (≤1-10 kWe);
- Use in close proximity to crew (low penetrating radiation);
- Readily available excess heat;
- Compactness and ease of transport;
- Enables Radioisotope Electric Propulsion (REP) – benefits of NEP with low power spacecraft (1-5 kWe)
 - Application of high-performance electric propulsion in deep space
 - Specific powers comparable to near-term reactor-based NEP
 - Much smaller spacecraft
Recent and Planned RPS Units

SNAP-19
- Pb-Te/TAGS thermoelectrics
- 40.3 Watts (BOM)
- 6.2 % eff; 3 We/kg
- Nimbus B-1/III
- Pioneer 10 & 11
- Viking 1 & 2

Multi-Mission RTG (MMRTG)
- Mars Science Lab (MSL)
- Other missions

1990
- GPHS RTG
 - Si-Ge thermoelectrics
 - 42.7 dia x 44.9 long (cm)
 - 292 We (BOM)
 - 6.8% eff; 5.2 We/kg
 - Galileo
 - Ulysses
 - Cassini
 - Pluto New Horizons (New Frontiers 1)

1980
- Multi-Hundred Watt (MHW) RTG
 - Si-Ge thermoelectrics
 - 39.7 dia x 58.4 long (cm)
 - 158 We (BOM)
 - 6.6 % eff; 4.2 We/kg
 - LES 8 & 9
 - Voyager 1 & 2

1970
- SNAP-19

Stirling Radioisotope Generator (SRG)
- 40.3 Watts (BOM)
- 6.2 % eff; 3 We/kg
- Nimbus B-1/III
- Pioneer 10 & 11
- Viking 1 & 2

1980
- Multi-Mission RTG (MMRTG)

1990
- GPHS RTG

2000
- Multi-Hundred Watt (MHW) RTG

2010
- Stirling Radioisotope Generator (SRG)
Potential Future RPS-Powered Science Missions

Under Current Study
- **Planetary Atmospheric Missions:** 100W-class units, ≥14 yr lifetime, ops in Mars & Titan environment
 - Mars Science Lab (2009): ~100W
 - Mars Astrobiology Field Lab (2016-18): ~100W
 - Titan Explorer/Aerobot (2020-25): ~100W
- **Deep Space Missions:** 100W-class units, ≥14 yr lifetime
 - Solar Probe (2015): ~300W
 - Europa Geophysical Explorer (2016): ~800W
 - Titan Explorer/Orbiter (2020-25): 100’s of watts
- **Venus Surface Explorer (2020-25):** 100’s of watts, ≤3 yr lifetime, integrated Stirling cooler/power generator

Not Under Serious Consideration at Present
- **Small Surface Missions:** 10W-class units, ≥14 yr lifetime
 - Mars Netlander (≥2020): 10’s of watts
 - Fetch Rovers (≥2020): 10’s of watts
- **REP-based Deep Space Missions:** 100W-1kW units, ≥14 yr lifetime, ≥8 We/kg
 - New Frontiers missions (≥2020): ≤1 kW (e.g., Trojans, Centaurs)
 - Flagship missions (≥2025): 3-4 kW (e.g., Neptune/Triton, Interstellar Probe)
- **REP-based Missions to Giant Planets (≥2030):** 1kW units, ≥14 yr lifetime, ≥10 We/kg
 - Jovian System Tour (JIMO Lite) (≥2030): ≤5 kW
 - Tours of Other Outer Planetary Systems (≥2030): ≤5 kW
Potential Lunar and Mars Surface Exploration Applications

- Robotic Rovers: 100W-class units, ≥2 yr lifetime, ops in sunlit and shadowed areas on moon
 - RLEP-2 (2011): ~100 W
- Milliwatt-scale units for transponder and beacon applications (≥2011): 10-100 mW
- 100W-scale Portable Generator: Transported to moon on crewed sorties. No more than 2 sorties per year. Accumulate at site for future use.
 - Sortie mission deployable science packages (2018-2025): 4 types defined ranging from 50 W to 500 W
 - Extended mission deployable science packages (≥2025): 3 types defined ranging from 100 to 500 W
- 1kW-scale Portable Generator: Transported to moon on crewed sorties. No more than 2 sorties per year. Accumulate at site for future use.
 - Sortie habitat power for stays ≥14 days (≥2020): 4 kW
 - Emergency power ≥14 days (≥2020): 1-3 kW
 - Lunar pressurized rover (≥2025): 7 kW
 - Extended mission deployable 10-meter drill (≥2025): 6 kW
 - Communication/navigation station (≥2025): 1 kW
Cross-Cutting Applications for Small and Large RPS

Small RPS (mWe to several We)
- Numerous potential planetary surface and space applications (e.g., networked science stations, deployable mini-payloads)
- 3 general size ranges using existing Pu-238 thermal sources
 - 40-80 mW (based on 1-few RHUs)
 - 0.1-few W (based on multiple RHUs or fractional GPHS)
 - 10-20 W (based on single GPHS module)

Radioisotope Electric Propulsion (REP)
- Low power NEP concept based on RPS as principal power source
- Science application for large RPS (≥1 kWe)
- Enables use of high-performance electric propulsion independent of distance from Sun (i.e., deep space)
- Compatibility on small spacecraft permits launch system injection into C3 > 0 and offsets performance disadvantage of low specific power
Plutonium-238 Requirements Versus Power Level

Efficiency (%)

Approximate Pu-238 Mass (kg)

Delivered Electric Power (kW)

GPHS RTG

Cassini Spacecraft

MMRTG

SRG

Evolution 2 (Upper Limit)

Evolution 3

Evolution 2 RPS

Efficiency (%)

5

10

15

25

35

Reactor Spacecraft

Upper Limit (Evolution 2 RPS)
Possible Scenario for Nuclear Power Evolution

- **Exploration Applications**
 - Lunar rovers
 - Autonomous stations

- **Science Mission Applications**
 - MSL
 - Europa Geo Orbiter
 - Solar Probe

- **Current/Near-Term RPS**
 - REP
 - More capable science missions

- **2nd Gen RPS**
 - Crew power & heat
 - Crew rovers

- **Realistic 1st Gen FPS***
 - Base operations

- **Poor Man’s NEP**
 - Large science stations/payloads

* Fission Power System (FPS)
Possible Scenario for Nuclear Power Evolution

Existing Capability
GPHS RTG

Phase 1
Stirling Radioisotope Generator (SRG) and Multi-Mission RTG (MMRTG)
- MMRTG

Phase 2
High-Performance/High-Power RPS Generator
- Stirling-based concept

Phase 3
Multi-Kilowatt Source (Reactor or RPS)
- Reactor concept

Potential Mission Applications
- Rovers and landers for robotic lunar science missions
- Deployable instrument packages and stations
- Robotic planetary missions

Current nuclear power source in U.S. inventory
- 285-300 We at BOM
- 5.2 We/kg specific power

Currently under development by RPS program
- 110-125 We at BOM
- ~3 We/kg specific power

Based on advances from current technology projects
- Up to 1-2 kWe
- 8-10 We/kg

Based on converters from Spiral 2 RPS unit
- 10-40 kWe
- 10-12 We/kg

Potential Mission Applications
- Large scale support operations for crewed missions (rovers, instrument packages, base power)
- Electric propulsion for 3-4 kW robotic probes
- Centralized power source for extended crew operations on Moon and Mars
- Power source for crewed spacecraft
Backup
Progression in Capability

Lunar Robotic Science
- High-Performance Stirling Technology (Developed under RPCT, SBIR & GRC research)

Short Crewed Missions
- SRG
 - 112 We
 - 24% efficiency
 - 3.3 We/kg sp power
- kW-Class Stirling
 - 1-2 kWe
 - 30-35% efficiency
 - 8-10 We/kg sp power

Extended Crewed Missions
- Multi-10 kW Power System
 - 20-30 kWe
 - 30-35% efficiency
 - 10-14 We/kg sp power

Power Conversion

Heat Source

Reactor Technology (Developed under Prometheus)

DRAFT - pre-decisional for information purposes only