Outpost Science and Exploration Working Group (OSEWG)

Presented to Planetary Science Subcommittee

Kelly Snook
NASA Headquarters

March 4, 2008
OSEWG Organization

- Chartered jointly by ESMD and SMD in FY2007 to coordinate and guide outpost-related science and exploration planning
- Terms of Reference signed 3/07 by ESMD (Cooke and Yoder) and SMD (Hartman and Hertz)
- Working group reports to ESMD and SMD Deputy AAs
- Group co-chaired by ESMD Manager for the Lunar Architecture Team (Yoder) and SMD Lunar Program Scientist (Morgan/Snook)
- Core membership drawn from HQ and Constellation (Cx) and to include SOMD, ARMD, ESMD, and other organizational members as appropriate
- Jointly funded by respective Mission Directorates
OSEWG Organization (cont.)

- Deputy AAs
- ESMD/SMD co-chairs
 + HQ Personnel
 + WG Co-chairs
- Center and HQ Personnel

Diagram:
- SMD
- ESMD
- SOMD
- ARMD

OSEWG

- Lunar Data Integration Working Group
- Surface Scenario Working Group
- Analog Missions Working Group
Maximizing Science Return - Big Picture

- Get as much time at diverse sites as possible - “boots on sand”
- Maximize quality and quantity of samples returned
- Optimizing science payloads to the surface
OSEWG Members

- Craig, Douglas A. (HQ-BJ000)
- Durda, Daniel D. (HQ-DA000)
- Fogel, Robert A. (HQ-DG000)
- Gates, Michele M. (HQ-CI000)
- Giles, Barbara (HQ-DJ000)
- Johnston, Gordon (HQ-DA000)
- Kakar, Ramesh (HQ-DK000)
- Leshin, Laurie A. (GSFC-600.0)
- Mendell, Wendell W. (JSC-KA)
- Snook, Kelly (HQ-DA000)
- Thomas, Andrew S. (JSC-CB)
- Wargo, Michael (HQ-BL000)
- Yoder, Geoffrey L. (HQ-BJ000)
- Rummel, John (HQ-DG000)
- Tony Lavoie (MSFC)
CxAT_Lunar Organization

OSEWG

ESMD

Direction & Funding

Cx OPSE

CxAT_Core

CxAT_Lunar

Senior Advisor A. Thomas

Transportation SE

Surface SE

CxAT Mass

Surface System Design/Analysis

Strategic Analysis

Requirements and Integration

Mission Ops

Integrated Transportation Performance
OSEWG Kick-off and Terms of Reference

- OSEWG Kick-off meeting held at NASA HQ Sept. 26-27
- Three Working Sub-groups identified as starting points
- Goal is to start with manageable tasks – validate the system process

1. Develop OSEWG 5-yr plan (high resolution for this year)
2. Analog Missions Coordination – included entry points, reviews, expected outcomes, etc.
3. Lunar Data Synthesis and Integration – ensures we are looking across the Lunar mapping resources i.e. LRO, Selene, MMM, etc
4. Surface science scenario definition
OSEWG Lunar Data Synthesis and Integration

- Lunar Reconnaissance Orbiter will provide data that are necessary to develop the maps needed for our return to the moon
 - Launch October 28, 2008
 - Data return will begin soon after start of nominal mission
 - Data will reside in the Planetary Data System, a repository for science data
 - Data in PDS format is not likely to be the most useful form for the users in Exploration Systems
- We need to identify the primary users and their needs
 - Who are the users?
 - What lunar mapping information do they need?
 - What form does the information need to take?
 - When is the information needed?
Lunar Mapping Workshops

• First workshop dealt with the Why and the What - early activity focused on LRO
• The How is a subject being dealt with in parallel: the lunar mapping architecture

 • Who - primary users
 - Constellation
 - LSAM
 - Habitat
 - Mobility
 - Power
 - Surface Ops
 - Site Selection
 - Comm
 - Mobility
 - Lunar Model Dev

 • Who - Secondary (for now) users
 - Science
 - Education
 - Public Outreach
 - Public Affairs
Lunar Data Synthesis - Guiding Principles

- Requirements driven
 - Identify users
 - Discriminate between requirements and desiresments
- Standards based
- Identify and leverage existing capabilities
- Extensibility
- Robustness
Variables Affecting Surface Scenarios (lunar exploration chickens and eggs)

- Mission Duration
- Landing site
- Mobility
- Landed science payloads (mass, sequencing)
- Return mass capabilities
- Sortie vs. outpost
- Crew expertise/training
- Extent of tele-robotic capability (from hab, from ground)
- Laboratory capabilities + in situ measurement capabilities
- Documentation automation capabilities
- Concepts of operations (crew time available for science)
- Navigation and communications
Representative Science Payload Elements

<table>
<thead>
<tr>
<th>Element Name</th>
<th>Description</th>
<th>Mass Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lunar Environmental Monitoring Station (LEMS)</td>
<td>Volatiles, plasma field, radiation monitoring, dust – should be deployed early to monitor site evolution</td>
<td>500 kg</td>
</tr>
<tr>
<td>Traverse and Sampling Package (TSP)</td>
<td>Diverse kit including sampling tools and containers, rover-carried sample selection instruments, and traverse geophysics instruments</td>
<td>500 kg</td>
</tr>
<tr>
<td>Sampling Resupply Kit (SRK)</td>
<td>Sample containers and tools to replace consumables in TSP</td>
<td>100 kg</td>
</tr>
<tr>
<td>Lunar Interior Monitoring Station (LIMS)</td>
<td>Geophysics station – seismology, heat flow, etc.</td>
<td>500 kg</td>
</tr>
<tr>
<td>Lab in Hab (LAB)</td>
<td>Instruments inside “lab” at outpost for sample screening</td>
<td>350 kg</td>
</tr>
<tr>
<td>Automated Sample Handling System (SHED)</td>
<td>Automated sample handling equipment outside the hab-lab for handling samples in the “rock garden”</td>
<td>500 kg</td>
</tr>
<tr>
<td>Telescope (OBS)</td>
<td>Small observatory for earth observation or astrophysics applications</td>
<td>Up to 500 kg</td>
</tr>
<tr>
<td>Orbiter Packages (ORB)</td>
<td>Orbital science to be carried either in “SIM bay” or to be kicked out into lunar orbit – mostly heliophysics science</td>
<td>Up to 500 kg</td>
</tr>
</tbody>
</table>
Representative Science Tasks

Architecture building block: Design Reference Tasks

<table>
<thead>
<tr>
<th>Mission: All Options Design Reference Task (DRT)</th>
<th># crew</th>
<th>EVA</th>
<th>IV support</th>
<th># hours</th>
<th>Rover required</th>
<th>Carrier required</th>
<th>Comm to earth</th>
<th>Daylight required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lunar Environmental Monitoring Station (LEMS)</td>
<td>2</td>
<td>one time deployment</td>
<td>no</td>
<td>8</td>
<td>y</td>
<td>n</td>
<td>y</td>
<td>For deployment</td>
</tr>
<tr>
<td>Traverse and Sampling Package (TSP)</td>
<td></td>
<td>Every science EVA</td>
<td>no</td>
<td>32/week</td>
<td>y</td>
<td>n</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>Sampling Resupply Kit (SRK)</td>
<td>1</td>
<td>Replace sampling package for TSP</td>
<td>no</td>
<td></td>
<td>n</td>
<td>y</td>
<td>n</td>
<td>y</td>
</tr>
<tr>
<td>Lunar Interior Monitoring Station (LIMS)</td>
<td>2</td>
<td>One time deployment</td>
<td>no</td>
<td>8</td>
<td>y</td>
<td>n</td>
<td>y</td>
<td>For deployment</td>
</tr>
<tr>
<td>Lab in Hab (LAB)</td>
<td>1</td>
<td>Every science IVA</td>
<td>yes</td>
<td></td>
<td>n</td>
<td>n</td>
<td>y</td>
<td>n</td>
</tr>
<tr>
<td>Automated Sample Handling System (SHED)</td>
<td>2</td>
<td>With every science EVA</td>
<td>yes</td>
<td>1/ science EVA</td>
<td>n</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>Telescope (OBS)</td>
<td>2</td>
<td>one time deployment</td>
<td>no</td>
<td>8</td>
<td>y</td>
<td>n</td>
<td>y</td>
<td>For deployment</td>
</tr>
<tr>
<td>Orbiter Packages (ORB)</td>
<td>1</td>
<td>no</td>
<td>no</td>
<td></td>
<td>n</td>
<td>n</td>
<td>y</td>
<td>n</td>
</tr>
</tbody>
</table>
Science Manifesting Guidelines

<table>
<thead>
<tr>
<th>Element Name</th>
<th>Description</th>
<th>Mass Estimate</th>
<th>Manifesting Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lunar Environmental Monitoring Station (LEMS)</td>
<td>Volatiles, plasma field, radiation monitoring, dust – should be deployed early to monitor site evolution</td>
<td>500 kg</td>
<td>HIGH PRIORITY -- Important to get this down as early as possible to monitor site evolution as humans come. 5 year life – replace after 5 yrs</td>
</tr>
<tr>
<td>Traverse and Sampling Package (TSP)</td>
<td>Diverse kit including sampling tools and containers, rover-carried sample selection instruments, and traverse geophysics instruments</td>
<td>500 kg</td>
<td>HIGH PRIORITY -- Need one of these for each rover. In absence of rover, at least need sample supplies up to available mass.</td>
</tr>
<tr>
<td>Sampling Resupply Kit (SRK)</td>
<td>Sample containers and tools to replace consumables in TSP</td>
<td>100 kg</td>
<td>HIGH PRIORITY -- Need one of these for each crewed mission – can stockpile ahead of time</td>
</tr>
<tr>
<td>Lunar Interior Monitoring Station (LIMS)</td>
<td>Geophysics station – seismology, heat flow, etc.</td>
<td>500 kg</td>
<td>MEDIUM PRIORITY 1 – Bring 1 LIMS ASAP after LEMS and adequate sampling supplies. If mobility of ~500 km is possible, bring 2 more LIMS ASAP. 5 year life – replace after 5 years.</td>
</tr>
<tr>
<td>Lab in Hab (LAB)</td>
<td>Instruments inside “lab” at outpost for sample screening</td>
<td>350 kg</td>
<td>This is most critical after stays get long (≥~a month), and assuming there is room to set it up in the hab</td>
</tr>
<tr>
<td>Automated Sample Handling System (SHED)</td>
<td>Automated sample handling equipment outside the hab-lab for handling samples in the “rock garden”</td>
<td>500 kg</td>
<td>This is needed once the lab is functioning, but some HIGH PRIORITY capability for sample storage, documentation, and curation is needed immediately</td>
</tr>
<tr>
<td>Telescope (OBS)</td>
<td>Small observatory for earth observation or astrophysics applications</td>
<td>Up to 500 kg</td>
<td>MEDIUM PRIORITY 2 – bring as soon as can be accommodated but after LIMS. Can bring more then 1 as this is a “generic” telescope</td>
</tr>
<tr>
<td>Orbiter Packages (ORB)</td>
<td>Orbital science to be carried either in “SIM bay” or to be deployed into lunar orbit – mostly heliophysics science</td>
<td>Up to 500 kg</td>
<td>MEDIUM PRIORITY 3 – bring as soon as can be accommodated but after LIMS and OBS. Can bring more then 1 as this is a “generic” orbiter</td>
</tr>
</tbody>
</table>
OSEWG Tasks and Responsibilities

• Analyze and develop outpost Design Reference Science Investigations (DRSIs) using a case approach
• Focus on evolving, time-phased outpost activities with maximum synergy - scientific return, and exploration benefit
• Inform ongoing calls for joint SMD/ESMD research programs (e.g. LASER, MMAMA)
• Flesh out outstanding unknowns related to science operations – payload and sample masses, EVA requirements, mobility, work-space and laboratory equipment, crew time, human/robotic optimization, etc.
• Identify new technology needs (Primarily Science related)
• Address exploration requirements as contained in Exploration Architecture Requirements Document (EARD) and work with CxAT Science Team to refine Constellation Exploration Architecture
OSEWG Analogs Coordination

- Facilitate and document SMD/ESMD/SOMD/ARMD jointly-coordinated analog activities
- Provide analogs community with prioritized set of needs, requirements, outstanding problems needing investigation, and other points of feed-in to NASA mission planning processes
- Expand the database of usable analog sites, missions, and lessons learned by opening it to larger user community
 - A completely open Web Portal will be subject to NASA internal review and approval
 - Provide an on-line repository for analogues community (not just NASA) to store results of field deployments and research past deployments and associated lessons learned
 - Provide an assessment and characterization of usable analog sites
- Support and provide a forum for continued focused analog testing activities by ESMD, SMD, SOMD, or externally supported teams
- Coordinate with international analog science and engineering activities as appropriate
Analog Missions Coordination: Functions and Benefits

• **Learn**
 – Reduce risk to crews for human surface missions to the Moon and Mars
 – Learn what works and what doesn’t work for surface science operations and exploration missions
 – Enable scientific advances in planetary and Earth studies

• **Test**
 – Validate surface mission designs: Long duration presence, Outpost buildup, Human & robotic roles, etc.
 – Demonstrate integrated use of products from multiple CxP projects
 • Validate hardware/software performance under realistic conditions, as commanded by crews and/or mission control
 • Identify performance shortfalls in systems and support iterative testing
 – Validate mission operations designs and functions for planetary missions
 – Influence engineering and payload system designs via early use in realistic situations
 – Enable **surface science** by demonstrating integration of science activities and payloads into surface exploration mission activities

• **Train**
 – Reduce risk to crews and to mission objectives
 • Improve crew and Mission Control team readiness for surface activities
 • Increase mission efficiency and effectiveness by evaluating competing approaches early

• **Engage**
 – Help sustain the excitement of exploration for the public well before missions become reality
 – Demonstrate accomplishment of key milestones to decision-makers
Analog Missions Working Group Issues

TRAVERSE PLANNING - Navigation, data requirements, field crew vs. ground team planning, crew time optimization, hab workspace requirements, teleoperations and robotic assistance

SAMPLE AND DATA ACQUISITION - Navigation, sampling strategies, sample preservation, in-situ measurements vs. sample collection, mass, power, and volume estimates.

DOCUMENTATION - Sample documenting automation - RF tagging or barcoding, Video/camera and audio requirements, real-time versus post documentation, time-stamping, real-time GIS capabilities in suit and/or rover

SAMPLE HIGH-GRADING - Concepts for optimizing mass returned, space and crew time requirements, robotic assistance, data requirements, rock garden/sample shed concepts, optimizing crew/ground interactions. Autonomous high-grading of samples in situ

LABORATORY ANALYSIS - Minimum and dream lab requirements (volume, functionality, sample preservation, glove box limitations, etc.), capabilities vs. mission duration, lab science vs. EVA science - optimizing crew presence

SAMPLE RETURN - Preserving sample integrity, mass/power/volume of returned sample masses (reports from recent studies)

CURATION - Surface sample handling, documentation, transport, storage
Path Forward

- Working Group Terms of Reference signed by OSEWG and Deputy AAs
- June 2008 - October 2008 - Joint ESMD/SMD/SOMD analog missions
 - ESMD investment in technology development and con ops (ETDP)
 - SMD investment in science investigations and science ops (ROSES 07, 08)
 - SOMD participation in analog missions planning
Backup
Analogs - Continuing Past Work

- Analogs “Tasker” begun within ESMD in 2005
- Analogs Database and Web Portal created and put on a “green” server
 - Web Portal is currently ID and Password protected
 - Ready to add Apollo-era training sites
 - Ready to incorporate EVA lessons-learned database compiled by NASA Astronaut Office
- Space Technology and Applications International Forum (STAIF) - Feb 2007
 - Primarily technology users and developers
- Invited Meeting at JSC (“First Analogs Workshop”)
 - Timed to coincide with Lunar and Planetary Sciences Conference (LPSC), so primarily science user community but NASA analogue users also represented
- Initial “supplier” community meeting
 - Largely JSC-based long-standing analogues programs: Desert RATS, Haughton-Mars Program (HMP), and NASA Extreme Environment Mission Operations (NEEMO)
- ARDIG established as focal point for Constellation Program Office analogues activities
 - Launched “analogs initiative”
 - Begin coordination activity among JSC-based analogues groups: DRATS, HMP, and NEEMO
Analogs
@ Johnson Space Center, Houston, Texas

Welcome to the Analogs website at Johnson Space Center. The purpose of this website is to serve as a source of information on and a collaboration tool for analogs activities; primarily, but not exclusively focusing on analogs relevant to NASA’s exploration program’s and the Vision for Space Exploration.

This website is still in development and most sections will remain username/password restricted until a review of the website has been completed.

If you wish to participate in this review, please use the “+ feedback” menu item to make a request for username/password.

Announcements:

The presentations from the workshop on March 16 are now available (no username/password required).

Please make sure that your passwords meet the following minimum requirements. The length must be at least 8 characters and contain at least one of each of the following: an uppercase letter, a lowercase letter, a number, and a special character.

An events calendar is now online for review through the “+ events” menu link.

The prototype Surface Exploration Lessons Learned Database (SELL DB) is now online for review through the “+ SELL DB” menu link.

The prototype Analogs Database (AnalogsDB) is now online for review through the “+ AnalogsDB” menu link.
Website Layout Example - Analog Site

Site Details

Name
Meteor Crater

Location
Longitude, Latitude (Datum)
N 35°18'16.5" W 110°27'51.8"

Altitude
1700 meters

Description

Sponsor or owner
Meteor Crater Enterprises Inc

Lead Person
No information in the database.

Contact Person
No information in the database.

Description

Test site is located on the rim of a midlate Quaternary impact crater which formed when an iron-nickel bolide impacted into Mesozoic sediments, primarily the Mocniola Shale, Kalahari Limestone and Edmondo Sandstone. The test site is located within the ejecta blanket, with fan to hummocky terrain created by emplacement of impact fragmented and shattered Kalahari Limestone. Boulders up to 2.3 m in size are found, although the majority of the surface consists of smaller, <0.25 m cobble-sized fragments of Kalahari Limestone in a matrix of shocked and comminuted limestone and sandstone.

Special Access Information

Need to get permission from the commercial operator of the Meteor Crater tourist attraction.
Mission Details

Name
Advanced Space Suit Field Test 2000

Date
September 2, 2000 to September 15, 2000

Organizational Lead or Sponsor
NASA JSC

Lead Person
Joseph J. Kosmo

Contact Person
Amy Ross

Description
Until the ASRS project, little was known about the investigation strategies necessary for determining and coordinating the interaction between humans and robotic rover vehicle systems towards achieving effective planetary surface exploration. As a result of this test experience and based on the preliminary findings and recommendations, as reported in CTED-ADV-360 document, a series of representative planetary surface EVA-deployment tasks were conducted as part of a joint project between elements of NASA/JSC to further investigate the synergism and interaction between humans and a robotic assistant vehicle for potential future planetary surface exploration applications.

Objectives
The objectives of this series of test activities was to develop an interdisciplinary level of "lessons learned" by conducting preliminary engineering assessments and human factor evaluations of various representative space suited EVA / robotic assistant vehicle planetary surface deployment tasks while in Lunar / Mars analog remote field site locations. In addition, the test activities were valuable in demonstrating to various levels of NASA management, the scope of technology needs that will be required to successfully accomplish future human and robotic assisted rover vehicle exploration of planetary surfaces. Other benefits include public education outreach opportunities and Public Affairs Office (PAO) coverage for new releases.

Results
No information in the database.

Lessons Learned
Integrated Analogue Studies - Prerequisites for Human Exploration

<table>
<thead>
<tr>
<th>Elements</th>
<th>Analogue Field Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Value</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
</tr>
<tr>
<td>Science Operations</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
</tr>
<tr>
<td>Tech. Development</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
</tr>
<tr>
<td>Tech. Integration</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
</tr>
<tr>
<td>Mission Operations</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
</tr>
<tr>
<td>Crew Training/Bio</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
</tr>
<tr>
<td>Human Factors</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
</tr>
<tr>
<td>Cost effectiveness</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
</tr>
<tr>
<td>Outreach/Education</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
</tr>
<tr>
<td>Overall Integration</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
</tr>
</tbody>
</table>

Notes:
- **Haughton-Mars:** Remote Science
- **Desert RATS:** Mars Desert R. S.
- **Flashline Arctic R.S.:** Mars Yard/Chamber
- **NEEMO:** Integrity
- **Intl. Space Station:** Antarctic/desert

Low (○) to **High (●)** effectiveness.
<table>
<thead>
<tr>
<th>Science Value</th>
<th>None/Not appropriate</th>
<th>Simulated science tasks or science tasks not relevant to planetary science. Little/no publishable results.</th>
<th>Valid scientific objectives/tasks relevant to future planetary exploration. No intent to publish science results or publish science results not directly relevant to planetary science.</th>
<th>Planetary science tasks lead to publishable (peer-reviewed) science results.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Operations</td>
<td>Science operations not relevant to future missions.</td>
<td>Low fidelity relevant science operations, but not focused on operations lessons learned.</td>
<td>Medium fidelity to actual projected science procedures for planetary surface missions. Qualitative lessons learned.</td>
<td>High fidelity of science planning, procedures, communications, and reporting to planetary surface missions. Quantitative metrics,</td>
</tr>
<tr>
<td>Technology Development</td>
<td>Little/no technology development</td>
<td>Relevant technology used but not developed. Primarily application of existing technology.</td>
<td>Relevant technology developed but not dependent on analog environment.</td>
<td>New technology tested by taking full advantage of analog environment.</td>
</tr>
<tr>
<td>Technology Integration</td>
<td>None/Not appropriate</td>
<td>Different systems used simultaneously but not integrated.</td>
<td>Only a small number of applicable technologies used in an integrated fashion.</td>
<td>Multiple technologies used in an integrated fashion as proposed for actual mission.</td>
</tr>
<tr>
<td>Crew Team Training</td>
<td>None/Not appropriate</td>
<td>Tasks developed to meet immediate needs of test. Some applicability to flight or ground crew training.</td>
<td>Tasks are representative of space mission. Alternative procedures are tested and compared.</td>
<td>Tasks are directly applicable to mission preparation for flight or ground crews, e.g. motion flight simulators.</td>
</tr>
<tr>
<td>Human Factors</td>
<td>None/Not appropriate</td>
<td>Human crews involved, but low fidelity to planetary habitats or surface activities.</td>
<td>Medium fidelity habitat or surface simulation.</td>
<td>High fidelity habitat or surface simulation.</td>
</tr>
<tr>
<td>Medicine/Physiology</td>
<td>None/Not appropriate</td>
<td>Some studies relevant to future long-term human missions</td>
<td>Studies relevant to maintaining crew medical and health for orbital, transit, and/or surface human missions</td>
<td>Direct medical and physiological experiments on humans in long-duration space flight conditions</td>
</tr>
<tr>
<td>Outreach/Education</td>
<td>None/Not appropriate</td>
<td>Low level of activity. Low visual content/difficult to explain. Not directly relevant to mission.</td>
<td>Moderate level of activity. Moderate visual content relatively easy to explain. Partially relevant to mission</td>
<td>High level of activity. High visual content/easy to explain. Directly relevant to mission.</td>
</tr>
<tr>
<td>Overall Integration</td>
<td>None/Not appropriate</td>
<td>Low level of overall coordination among analog element (science value, science operations, etc.)</td>
<td>Moderate level of overall coordination among analog element (science value, science operations, etc.)</td>
<td>High level of overall coordination among analog elements (science value, science operations, etc.)</td>
</tr>
<tr>
<td>SITE CHARACTERISTICS</td>
<td>Terrain</td>
<td>Climate</td>
<td>Science</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Terrain Type</td>
<td>Climate</td>
<td>Science</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope / Grade</td>
<td>Moisture Content</td>
<td>Layered Sediments</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rock Size</td>
<td>Composition</td>
<td>Impact Features</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distribution</td>
<td>Mechanical Properties</td>
<td>Variety (multiple geologic environments)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Micropalontology / fossils</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Surface Ice</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Volcanics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Geothermal Activity</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Isolation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hostility</td>
<td></td>
</tr>
</tbody>
</table>

Human Factors

Operations

Ancillary EVA Systems Testing

Robotics/Rover Testing

System/Science Equip Deployment

Geology Field Training

Simulated Traverses

Importance

- **HI**: high degree of similarity is critical to effective analogy
- **MED**: similarity enhances analogy but is not critical
- **LOW**: similarity not important to effective analogy
PDS

Old Data

GIS Tools

Inference

Data (metadata)

International Data

USGS

LRO

Query by Browsing

PDS

SOC

SOC

SOC

MOC

• Standards
• Extensibility
• Robustness
• Leverage

Information

Quantitative

Mission Designers
Mission Planners
Mission Operations
Analysis Teams

Education
Public
Press

Qualitative

Reqs