Atmospheric Chemistry and Radiation in the Solar System as Guides to Exoplanet Atmospheres

David Catling & Tyler Robinson
Univ. of Washington
(+ Kevin Zahnle @ NASA Ames)

E-mail: dcatling@uw.edu
My homework assignment

From: david.crisp@jpl.nasa.gov
Date: February 5, 2013 2:03:37 PM PST

“...overview talk on “Composition/chemistry/aerosols/radiation”... to identify critical processes that are common to the Earth, other planets in our solar system, and exoplanets, and to discuss their interactions...”
Outline

1) Atmospheric composition:
 - Why atmospheres exist (zero-order question of escape and retention)
 - The taxonomy of atmospheric composition
 - Earth as bio-atmospheric chemistry

2) Radiation and structure:
 Chemistry-radiation connection
 1st order commonalities in stratospheres, tropospheres

3) Conclusions
Part 1: Atmospheric composition
The existence of atmospheres

Nature *(volatile-rich origin)* vs. nurture *(evolution)*?

Nurture must ultimately rule because atmospheres must be stable against obliteration by:

1) Impact erosion – loss from large body impacts

2) Irradiation-driven hydrodynamic escape (thermal escape end-member)
Good versus bad neighborhoods

The diagram illustrates the relationship between escape velocity (km/s) and V_impact/V_escape for various celestial bodies. Bodies with higher escape velocity and lower V_impact/V_escape are considered to be in good neighborhoods, while those with lower escape velocity and higher V_impact/V_escape are in bad neighborhoods. The presence of an atmosphere is also indicated, with bodies that do not have an atmosphere marked as "no atmosphere."
Transiting exoplanets

prediction: no atmosphere

Some Super-Earths

Kepler 70b
Kepler 70c

Corot-7b
Kepler 10b
55 Cnc e
Kepler 9d

Kepler 42c
Kepler 42d
Kepler 11f
Kepler 11e
Kepler 30d

Estimated v_{impact}/v_{escape} vs Escape velocity (km/s)
Thermal (hydrodynamic escape) stability

So, atmospheres will not exist if:

1) **Bad impact regime** (has received little attention)

- rocky planets in **M-star habitable zone** are vulnerable

- e.g. Earth @ 1/9AU from 1/3M⊙
 Mars in same HZ,
 \[\frac{v_{\text{impact}}}{v_{\text{esc}}} \sim 3 \] => problem for complex life?
 \[\frac{v_{\text{impact}}}{v_{\text{esc}}} \sim 6 \] => I predict airless

- M-star planets form \(10^5-10^6\) yrs => migration is an *unlikely* savior; disk dissipation takes \(\sim 10^{6-7}\) yr from observations, so planet will be in its final orbit while impact regime is bad (Lissauer, 2007, *Ap. J.*).

- Lucky ones? Frozen volatiles on night-side; late slow, volatile-rich impactors

2) **Bad thermal regime** (prone to hydrodynamic escape)

- Pre-main sequence luminosity is under-appreciated

- e.g., a 1/3M⊙ M-star is \(\sim 10\times\) more luminous during first \(\sim 4\) Myr than on the main sequence, when planets have formed
Taxonomy of atmospheric compositions

(a Solar System perspective)

Fundamentally, two types:

1. Reducing
 - Titan
 - Pre-2.4 Ga Earth
 - Pre-4.3 Ga? Mars

2. Oxidizing
 - Post-2.4 Ga Earth
 - Venus (at altitude)
 - Mars

I’m ignoring
-very tenuous N₂ (CH₄) ice-vapor equilibria air of KBOs
(e.g., Triton, Pluto)
Fate of hydrogen in reducing atmospheres
a key difference in small vs. large bodies

Note: S forms polysulfur

From: Catling & Kasting (2014)
Atmospheric Evolution on Inhabited and Lifeless Worlds, Cambridge Univ. Press.
Snapshot of taxa: GJ1214b-type atmospheres

From R. Hu (2013), 44th LPSC, 1428

Elemental abundance, H

Elemental C/O ratio

Specified:
0.014 AU, M star
470 K top
800 K @1 bar
Fixed C-H-O

hydrocarbon if O-poor
C-oxide if O-poor

Solar
Sulfur in oxidizing atmospheres
differences in dry vs. wet worlds, cold vs. hot

Earth
oxidized S in oceanic SO$_4$(aq)
H$_2$SO$_4$ haze (Junge layer @20-25 km)
volcanoes:~1% of ~30% albedo

Venus (>30 km)
Sulfur in air given hot surface
SO$_2$, 3rd after CO$_2$, N$_2$ abundances
H$_2$SO$_4$ thick haze, important in IR,
dominates 76% visible albedo

Mars
oxidized S in soil, sedimentary SO$_4$(s)
H$_2$SO$_4$ haze early Mars, adds \geq10% albedo (Tian et al., 2010)
Earth: uniquely wet and O$_2$-rich...

- **2 key consequences for chemistry**: (1) a strong control on trace gases via the hydroxyl radical OH (2) rainfall

1) **CLEAR OUT THE MUCK BY OXIDATION; PLUS RAIN OUT**

O$_3$ absorption <340 nm generates O(1D)

$$H_2O + O(^1D) \rightarrow OH + OH$$

Oxidizes H$_2$S, COS, DMS to sulfate (NH$_3$ to NH$_3$-sulfate in troposphere) which rains out.

Oxidizes CO, CH$_4$ and other hydrocarbons to CO$_2$ and H$_2$O

=> air transparent to visible

=> sunniest planet in Solar System with an atmosphere

2) **IF THERE WERE A LACK of ‘OH’ => HAZE WOULD BUILD UP**

e.g., Archean Earth: CH$_4$ and associated hydrocarbons + haze
Thick sulfate aerosol haze

Indicates a dry, volcanic planet
Sort of anti-biosignature.

Venus: nailing H_2SO_4 required polarized reflected light as a function of phase angle (Young, 1973; Hansen & Hovenis, 1974).

Exoplanets: ~45 micron sulfate feature, MIR OCS, SO$_2$ proxies.

(Conversely, S$_8$ absorption edge@300-400 nm)
Part 2: Radiation, structure

• Chemistry-radiation connection

• 1st order commonalities and differences in stratospheres, tropospheres, tropopauses
<table>
<thead>
<tr>
<th>World</th>
<th>Stratospheric Heating</th>
<th>Stratospheric Cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venus</td>
<td>(\text{CO}_2)</td>
<td>(\text{CO}_2)</td>
</tr>
<tr>
<td>Earth</td>
<td>ozone (UV)</td>
<td>(\text{CO}_2)</td>
</tr>
<tr>
<td>Jupiter</td>
<td>aerosols (UV/vis); methane (NIR)</td>
<td>acetylene ((\text{C}_2\text{H}_2)) 13.7 (\mu\text{m}) ethane ((\text{C}_2\text{H}_6)) 12.2 (\mu\text{m})</td>
</tr>
<tr>
<td>Saturn</td>
<td>aerosols (UV/vis); methane (NIR)</td>
<td>acetylene ((\text{C}_2\text{H}_2)); ethane ((\text{C}_2\text{H}_6))</td>
</tr>
<tr>
<td>Titan</td>
<td>haze; methane (NIR)</td>
<td>acetylene ((\text{C}_2\text{H}_2)); ethane ((\text{C}_2\text{H}_6)); haze</td>
</tr>
<tr>
<td>Uranus</td>
<td>aerosols (UV/vis); methane (NIR)</td>
<td>acetylene ((\text{C}_2\text{H}_2)); ethane ((\text{C}_2\text{H}_6))</td>
</tr>
<tr>
<td>Neptune</td>
<td>aerosols (UV/vis); methane (NIR)</td>
<td>acetylene ((\text{C}_2\text{H}_2)); ethane ((\text{C}_2\text{H}_6))</td>
</tr>
<tr>
<td>World</td>
<td>Key greenhouse</td>
<td>Cooling factors</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Venus</td>
<td>CO$_2$ (15 μm)</td>
<td>huge SO$_4$ haze albedo</td>
</tr>
<tr>
<td>Earth</td>
<td>H$_2$O (continuum)-CO$_2$ (15 μm) (CH$_4$, O$_3$ N$_2$O)</td>
<td>H$_2$O cloud albedo, small SO$_4$ haze</td>
</tr>
<tr>
<td>Jupiter</td>
<td>H$_2$-H$_2$, H$_2$-He CIA; NH$_3$, CH$_4$</td>
<td>cloud, haze albedo</td>
</tr>
<tr>
<td>Saturn</td>
<td>H$_2$-H$_2$, H$_2$-He CIA; PH$_3$, CH$_4$</td>
<td>cloud, haze albedo</td>
</tr>
<tr>
<td>Titan</td>
<td>N$_2$-N$_2$, N$_2$-CH$_4$, N$_2$-H$_2$, CH$_4$-CH$_4$ CIA</td>
<td>haze ‘anti-greenhouse’ absorbs solar in IR optically thin region</td>
</tr>
<tr>
<td>Uranus</td>
<td>H$_2$-H$_2$, H$_2$-He CIA; CH$_4$</td>
<td>cloud, haze albedo</td>
</tr>
<tr>
<td>Neptune</td>
<td>H$_2$-H$_2$, H$_2$-He CIA; CH$_4$</td>
<td>cloud, haze albedo</td>
</tr>
</tbody>
</table>
Oxidizing
Absorption, oxidized gas: CO_2 (+H_2O +O_3 for Earth)
+band center emission (stratosphere)

Reducing
Absorption, reducing gas:
• H_2 on giants
• NH_3, on all giants (1400-1800 cm$^{-1}$); PH_3 on Saturn
• CH_4, H_2 operating with N_2 on Titan
Emission: C_2H_2 (729 = 13.7 μm) C_2H_6 (820 = 12.2 μm), CH_4
Commonalities in atmospheric structure
A note on terminology I’m using

Radiative-convective boundary

tropopause

gray radiative profile

convective profile

Altitude

Temperature
Commonalities in structure: Terminology

1) temperature minimum ‘tropopause’

2) Shockingly: let’s call the radiative-convective boundary... the “radiative-convective boundary”
Global mean tropopause minima @ ~0.1 bar

Pressure [bar]

Temperature [K]

McClatchey+ (1972); Lindal+ (1983); Moroz & Zasova (1997); Moses+ (2005)
I know, I know…

Yes, dynamics modulates the tropopause pressure on Earth by $\pm x2$ and is important for latitudinal differences on Venus.

Here I’m concerned with a 1^{st} order global mean state set by radiative-convective equilibrium.
Why ~0.1 bar tropopauses?
First, some wrong answers:

1) where the IR absorption by gas changes from pressure to Doppler broadening?

2) Where IR optical depth drops below ~1?
(National Academy atmos. physicist)
(but on the right track)
1. With T and flux continuity, solve for IR optical depth τ_{IR} at (i) radiative-convective boundary (ii) 1 bar
2. Relate optical depth to pressure to get profile

How molecular absorption of IR comes in

\[\tau = \tau_0 \left(\frac{p}{p_0} \right)^n \]

1 bar reference pressure

\(n = 2 \) in TROPOSPHERES & LOWER STRATOSPHERES:

- pressure broadening (molecules gain or lose energy during collisions so absorption over a wider range of photon energies)
- collision-induced broadening (collision-induced dipoles allow non-polar molecules to be greenhouse gases; also dimers or symmetry-breaking for forbidden transitions)

\(n = 1 \) in UPPER STRATOSPHERES (Doppler broadening)
Simple model is decent match to tropospheres and lower stratospheres of Titan, Venus, Earth + 4 giants

Unselfish cooperation in research: IDL source online
Ref: from Robinson & Catling (2013) Explanation of a common 0.1 bar tropopause in thick atmospheres of planets and large moons., Nature Geosci., in revision.
So, why the \(~0.1\) bar tropopause?

1. minima in T occur at $\tau_{IR} \approx 0.05$ (enough IR transparency for shortwave heating to start dominance)

2. pressure broadening and/or collision-induced absorption relate optical depth to pressure

$$\tau \sim p^2 \Rightarrow p \sim \tau^{1/2}$$

3. atmospheres are IR-optically thick at 1 bar

$$\frac{p_{\text{tropo}}}{(p_0 = 1 \text{ bar})} \approx \left(\frac{\tau_{\text{tropo}} \sim 0.05}{\tau_0 \sim \text{a few to several}} \right)^{1/2}$$ is always ~ 0.1 bar

Ref: from Robinson & Catling (2013) Explanation of a common 0.1 bar tropopause in thick atmospheres of planets and large moons., *Nature Geosci.*, *in revision*.
Gray optical depths at 1 bar are always \(\sim 2-10 \) for hypothetical Titan-like, Earth-like, and Jupiter-like worlds.

From: Robinson & Catling (2013), *Nature Geosci.*, in revision
Aside: Hot Jupiters are far from the norm

0.5-1% of all planets (Howard, 2013, Science)

So, I choose to focus on the other ones.

OCCUPY THE SOLAR SYSTEM:
Favor the 99% not the 1%!
What’s the condition for a stratospheric inversion to exist? It’s analytic

A tropopause minimum: differentiate and set to 0, gives:

\[\tau_{tp} \approx \frac{1}{k_{strato}} \ln \left(\frac{F^\odot_{strato}}{F^\odot_{tropo} + F_i} \left(\frac{k_{strato}^2}{D^2} - 1 \right) \right) \]

\[\approx 0.05 \]

where \(k_{strato} \) = \frac{\text{shortwave optical depth}}{\text{infrared optical depth}} \) of stratosphere

Only has a physical solution if \(k_{strato} > D \approx 1.7 \), usu. \(\approx 10^2 \)

Hence no global mean stratospheric inversion on Venus
THE USER MANUAL:

this “0.1 bar” tropopause minimum rule does not apply when there’s no minimum,

i.e., when the condition for a stratospheric inversion fails
e.g., pump up CO$_2$ on Earth; make moist stratosphere

Stratospheric inversion and tropopause minimum vanish, consistent with theory: At 64xCO$_2$, ~10x H$_2$O in stratosphere

$$k_{strato} = \frac{\text{shortwave optical depth}}{\text{infrared optical depth}}$$

goes from ~90 to < 2, the value needed for a tropopause minimum.

Hence no 0.1 bar tropopause minimum at high CO$_2$ because THERE IS NO MINIMUM
Extend to exoplanets?

~0.1 bar tropopause minima of Earth, Titan, giants from
(1) a common IR transparency requirement and
(2) a common pressure dependence on the IR opacity

TESTABLE HYPOTHESIS:

A ~0.1 bar tropopause minimum is an emergent “rule” arising from common physics that will apply to many exoplanets and exomoons with thick atmospheres

From: Robinson & Catling (2013) Explanation of a common 0.1 bar tropopause in thick atmospheres of planets and large moons., Nature Geosci., in revision.
Conclusions

• Atmospheres may not exist in bad impact erosion or thermal escape regimes
 - e.g., double whammy for M-dwarf planets

• No Super-Earth examples in our Solar System (notably present as exoplanets), but the bodies/models at least provide points of reference for exoplanet atmospheres.

• Atmospheres we know are: (1) reducing with organic hazes +/- poly-S, poly-P, or (2) oxidizing with sulfate hazes of variable radiative significance that can be high vis. albedo
 - Reasonable to expect to such hazes on similar exoplanets – can we see sulfate or S_8?
 - Reasonable to expect corresponding absorption / emission features of common reducing or oxidizing gas suites

• Structure:
 ▪ Reducing atmospheres we know have stratospheric inversions from methane+hazes
 ▪ Oxidizing atmospheres we know do (Earth) or don’t (Venus) have strat. inversions

• Stratospheric inversions require IR-optically thin stratospheres and absorbers strong in SW relative to IR. Combined with pressure-broadening or CIA => common ~0.1 bar level for tropopause minima. Testable hypothesis: Plausibly true in many exoplanet atmospheres

• Didn’t talk about evolution. But observing runaway Venuses (future Earths) states on exoplanets would clearly be an extremely valuable confirmation of theories.
References

ON IMPACT EROSION AND HYDRODYNAMIC ESCAPE OF ATMOSPHERES:

OVERVIEW OF THE CHEMISTRY, RADIATION AND EVOLUTION OF ATMOSPHERES:

RADIATION, ATMOSPHERIC STRUCTURE, and COMMON TROPOPAUSE MINIMUM LEVEL: