# The Diversity of Giant Planets:

**Infrared Observation and Data Analysis** 



SOCIETY

## Continuum of Jupiter-Class Planets

- 890+ exoplanets confirmed to date is opening a new era for comparative planetology:
  - Not including Kepler candidates, high abundance of Neptune class.
- Cool (100 K) and hot (2500 K) jovians exist on a continuum.
  - Our giants as a template for a common astrophysical object.
- Comparative planetology:
  - Processes: How do physical/chemical processes interact to shape giant planet structure?
  - Origins: How do giant planets form, implications for habitable planetary systems?
  - Time domain science: What drives the spatial & temporal variability of planetary atmospheres?



## Overview: Challenges for Giant Planet Science

### **OBSERVATION REQUIREMENTS**

- Beyond imaging highresolution spectro-spatial mapping.
- 2. Broad simultaneous spectral coverage to connect environmental and visible changes.
- 3. Long baseline observations for time-domain science.
- 4. In situ exploration.

SPECTRAL MODELING Inversion of spectra

to deduce atmospheric properties.

#### INTERPRETATION

- 1. Condensation chemistry and planetary taxonomy.
- 2. Three-dimensional troposphere/ stratosphere models: circulation, turbulence, waves, etc.
- 3. Bulk composition and formation of giant planets.
- 4. Sources of temporal variability.

Challenges for future observation; new techniques; continuous 'real-time' records

Statistical approaches

- what can we
reliably extract from
noisy, sparse data?
What are the
limitations?

A selection of four key objectives; hypothesis testing; comparative phenomenology; closer link between models and data.



## Why the Infrared?

- **Crucial for T(p) and compositional measurement** 
  - thermometers
- Amateur observers already providing a high-quality record of visible albedo variability.
  - Nightly records through online collaborations (e.g., PVOL).
  - Saturn storm watch
- IR challenging:
  - Telluric contamination
  - Diffraction-limited seeing requires larger facilities (e.g., long wavelengths often disc averaged).











## Req 1: Beyond Imaging: Spectral Mapping

VLT/VISIR 8.6-µm RGB (red=8.6 µm, image, August 15th green=13 μm, 2007 blue=10.7 μm)

- IR Studies typically fall into two categories:
  - Narrow-band photometric imaging in selected bands.
  - Point spectroscopy of features of interest.
- Images are excellent for global context, poor on information content.
- Need a combination: full spectra for each of these pixels, e.g., Cassini/CIRS and Cassini/VIMS spectra of Saturn (image cubes).





## Req 1: Beyond Imaging: Spectral Mapping



Wavelength [nm]

## Req 2: Broad, Simultaneous Coverage

- Aim to connect visible changes (clouds, colours, winds) to environmental changes (temperatures, composition, windshear).
- Requires reflected sunlight and thermal imaging at the same time.
  - E.g., Neptune stratospheric variability connected to convective activity at mid-latitudes?







## Req 2: Broad, Simultaneous Coverage



- Solar system science not alone - Broad spectral coverage extremely important for transit spectroscopy of exo-Jupiters.
- Solutions fitting broadband filters wildly degenerate!
- Future missions (EChO) could provide 0.4-16 μm simultaneously.

HD 189733b appears hazy but Na visible, no metals, no thermal inversion; HCN/C2H2 maybe important...

HD 209733b appears cloudfree, strong Na/K, metal oxides *could* cause thermal inversion...

Are these representative of a transition in the Jupiter class?



## Req 3: Long Baseline Observations

- Majority of observations are snapshots at single epochs.
- Reactive to rapid-change (e.g., impacts, plumes, storms).
- Time-domain atmospheric science for evolution of atmospheric processes on multiple timescales:
  - Hours-Days (storms, plumes, impacts)
  - Weeks-Months (belt/zone variability; storm evolution; waves).
  - Years-Decades (seasonal variability; response to solar cycle).

Jupiter's SEB Outbreak Gemini North/NIRI 18 Nov 2010

2.12 μm 1.69 μm







## Req 4: Beneath the Clouds

- Measurements of bulk composition and self luminosity constrain planetary evolution
- Remote sensing limited:
  - Condensation removes species from 'photosphere'
  - Degeneracies with T(p) and aerosols.
- In situ measurement:
  - Single point observation (e.g., Galileo's Sahara)
  - Shallow entry (may not reach well-mixed H2O).
- Juno MWR for deep O/H on Jupiter, but need comparison on all four giants.
- Future entry probe missions for Saturn and ice giants (e.g., Mousis et al., 2013). Buoyant, long-lived multi probes supported by orbiters?







### **OBSERVATION REQUIREMENTS**

- 1. Beyond imaging highresolution spectro-spatial mapping.
- 2. Broad simultaneous spectral coverage to connect environmental and visible changes.
- 3. Long baseline observations for time-domain science.
- 4. In situ exploration.



to deduce atmospheric properties.

#### INTERPRETATION

- 1. Condensation chemistry and planetary taxonomy.
- 2. Three-dimensional troposphere/stratosphere models: circulation, turbulence, waves, etc.
- 3. Bulk composition and formation of giant planets.
- 4. Sources of temporal variability.



## Perils & Promise of Spectral Retrievals

- Once this long-baseline, hyperspectral imaging is obtained, what next?
- **Atmospheric structure determination requires** inversion of spectra.
  - Spectral retrieval: identify family of statisticallyplausible solutions consistent with the data, independent of physical/chemical models.
  - Then reduce family of solutions using Occams' razor and physical constraints.
- Different treatments of measurement uncertainty and a priori bias can lead to different solutions.
  - Accurate error propagation essential, understand degeneracies in system.





013

## Retrievals Are Only as Good as their Radiative Transfer

- Detail of radiative transfer models evolve continuously, sources of uncertainty:
  - Measurements of intensity, wave number assignment, partition functions.
  - Collision broadening assumptions in H2-He environments, line widths and temperature dependencies.
  - Validity at high and low temperatures, e.g., high temperature lists for hot Jupiters.
  - Refractive indices of suspected aerosols; mixed and rimmed ices.
  - Ab initio models of collision induced absorptions.
- Vertical profiles of gaseous species (e.g., parameterised distributions).
- Well-mixed assumption may be invalid (e.g., methane on ice giants).
- Observers duty to be specific, careful and verbose in describing assumptions







### **OBSERVATION REQUIREMENTS**

- 1. Beyond imaging highresolution spectro-spatial mapping.
- 2. Broad simultaneous spectral coverage to connect environmental and visible changes.
- 3. Long baseline observations for time-domain science.
- 4. In situ exploration.



#### INTERPRETATION

- 1. Condensation chemistry and planetary taxonomy.
- 2. Three-dimensional troposphere/stratosphere models: circulation, turbulence, waves, etc.
- 3. Bulk composition and formation of giant planets.
- 4. Sources of temporal variability.

### Q1: Condensation & Classification?

- Influence of clouds dominates IR spectrum, but broad condensate features difficult to identify unambiguously.
- Condensate formation radically alters the balance of species available for chemistry.
- Planetary taxonomy schemes (e.g., Fortney et al., 2008) based on formation of condensates.
- ....but we still have no model capable of accurately reproducing cloud altitudes, colours, abundances and composition in our own Solar System!



Increasing Temperature





### Q1: Condensation & Classification?

Photochemical hazes can produce CCNs, coat condensates (rimming) or mix with condensates; clouds rarely occur where we expect! Contamination masks spectral signatures. **VENUS:** No condensate, thick photochemical **URANUS: Expect CH4 ice** H2SO4 clouds. at 1 bar, but actually see Vertically extended thick cloud 2-3 bars and haze. isolated clouds above inhibition of CH4 cloud formation? MARS: Transient clouds; polar hood condensation of CO2 and H2O; mesospheric CO2 clouds. JUPITER: NH3 ice only seen in strong convection; main cloud at wrong altitude; unknown chromophore; photochemical haze.

We need to understand cloud properties on our giants as a function of environmental conditions; develop condensation, photochemical and spectral models to reproduce observations before applying to EGPs.

### Q2: General Giant Planet Circulation?

- Conventional idea of giant planet circulation challenged:
  - Cool temperatures, elevated PH3, NH3, aerosols suggest air rising in zones.
  - BUT! Eddy momentum flux causes jet pumping; suggests air rises in belts, descends in zones (e.g., del Genio et al., 2012). Lightning storms prevalent in belts.
  - Transition to jet damping and switched circulation in upper troposphere? Where??
  - How high do the jets penetrate the stratosphere? How deep below the clouds decks?
- Need to think of these planets in three dimensions.

Need simultaneous measurement of dynamic tracers, and a model to explain ALL observables, more than just PV.









## Q2: General Giant Planet Circulation?

- Does tropospheric overturning work the same on the gas and ice giants?
  - Similar banding, but little correspondence with temperature/ wind field.
- Need ice giant
   exploration
   (temperatures, winds,
   dynamic tracers, jet
   pumping/damping
   regimes).
- Need ice giant modeling to explain why they appear so different.





## Q3: Sources of Variability?

- Variability occur due to storms, plumes, waves, instabilities, belt/zone life cycles and seasonal evolution.
- What controls the timescales for onset of polar vortices and development of new bands?
- What is the energy source for eruption of storms and plumes (e.g., Saturn's GWS, jovian upheavals), and what controls their periodicity?
  - Role of CAPE, deep meridional circulation enhancing instability, past a trigger point?
- What is the importance of waves in giant planet atmospheres; how to waves and vortices interact?
  - Waves diagnostic of deeper atmosphere.

2005-08-15





2004-07-12

Uranus from Keck, de Pater, Sromovsky et al.

2006-07-29

## Q3: Sources of Variability?

Simon-Miller et al., 2012

- Need a model capable of coupling weather layer to middle and upper atmosphere; diagnose causes of large-scale variability.
- Example: Appearance of Jupiter's stratospheric emission has changed substantially over a jovian year.

  - and composition of the polar atmosphere?



Time domain atmospheric science over short and long timescales; importance of waves in controlling visible phenomena in planetary atmospheres.

## Q4: Origin of the Giants?

- Crucial role of the giants.
- Different formation modes imprint different bulk compositions.
- Ratio of refractory to volatiles depends on phys/chem conditions in accretion disc:
  - Host star composition/metallicity & availability of planetary building blocks, migration
  - Radial T/p gradients and turbulent mixing in accretion disc, condensation 'snow lines' (H2O most important)
- Essential to have comparable measurements on all four giants.
- Can remote sensing reveal origin and evolution?
  - Does the atmospheric circulation and composition really reflect the interior?
  - Can we explain/predict giant planet abundances with a consistent formation framework?

Madhusudhan
(2012) based on
modeling Spitzer
data of hot Jupiters
with variable
temperatures and C/O ratio







## **Summary: Giant Planet Studies**

### **OBSERVING REQUIREMENTS**

- Comparative studies of our four giants now requires:
  - Long-term self-consistent datasets over multiple years;
  - Spatially resolved spectroscopy rather than filtered imaging;
  - Near-simultaneous coverage in reflected sunlight and thermal-IR;
  - Careful comparisons of retrieved properties from sparse data;
  - In situ exploration to provide groundtruth for remote sensing.
- Space-based observations from a dedicated planetary science observatory would remove complicating terrestrial atmosphere.
- Move beyond the era of snapshots with very different instruments.

### **INTERPRETATION REQUIREMENTS**

- Interpretation requires a new generation of models addressing all observables:
  - Accurate reproduction of observed cloud properties/altitudes/composition.
  - Consistent circulation models from deep troposphere to middle/upper atmosphere; from equator to pole; explain jet pumping/damping; vertical range of belts/zones.
  - Formation/migration/evolution models to explain bulk composition; interior models to understand vertical mixing.
  - Seasonal radiative models combined with weather-layer dynamics to reproduce variability in plumes, waves, instabilities, etc.
- Some of these models already exist, but we need to talk the same language – observers need hypotheses to test.



## More Importantly: Why Study the Giants?

- What's the big picture?
  - [Or, how can we convince cosmologists that we're tackling fundamental science?]



Natural planetary-scale laboratories for processes at work in atmospheres/oceans.

Closest examples of an astrophysical object that appears commonplace in our universe.

Formation of the giants may have played a crucial role in the development of our habitable solar system.

Provide the extremes of temperature to test our understanding of physical/chemical processes.

Miniature solar systems in their own right (rings, satellites, magnetospheres)

