

A CO₂-H₂ GREENHOUSE FOR EARLY MARS

 Presence of fluvial features on the martian surface suggest that early Mars was warm and wet

Warrego Vallis (Viking)

- A) Cutoff channel meander
- B) Cross-cutting channels

(inverted relief in both cases)

Malin and Edgett, *Science*, 2003

■According to Hoke et al., episodic intermittent runoff averaging ~10 cm/yr for (3-4)×10⁷ yr, were needed to form the larger valleys (~> 3x10⁶ m total runoff)

Grand Canyon

Nanedi Valles

Martian surface temperature vs. pCO₂ and solar luminosity

 $S/S_0 = 0.75$ at 3.8. b.y. ago, when most of the valleys formed

• Previous calculations showed that greenhouse warming by CO₂ (and H₂O) could not have kept early Mars' mean surface above freezing J. F. Kasting, *Icarus* (1991)

- Unfortunately, a standard CO₂-H₂O greenhouse cannot warm early Mars
- However, H₂ has been a potent greenhouse in H₂-dominated worlds (Pierrehumbert and Gaidos, 2011)
- We show that H₂ is also an effective secondary gas in warming the Martian surface

1-D Climate model

- 1-D radiative-convective climate model
- Cloud-free
- Delta two-stream approximation parameterizes gaseous absorption in 38 solar intervals
- 55 IR intervals that use time-stepping routine that iterates until:
 - Absorbed and emitted fluxes in stratosphere are balanced
 - Surface temperature converges to steady state

Climate model updates

- We derived new HITRAN 2008 coefficients for CO₂
 and HITEMP 2010 coefficients for H₂O
- The H₂-N₂ CIA data of Lothar and Frommhold (1986) are used as a proxy for H₂-CO₂
- Self-broadening by H₂-H₂ pairs was also incorporated (Borysow, 2002)
- H₂ Rayleigh scattering was added (Dalgarno and Williams, 1962)
- The Shomate Equation was used to compute the heat capacity of H₂

Results

Ramirez et al., (2013), in review

Are high H₂ amounts possible?

$$2H_2O \Leftrightarrow^{K_{eq}} 2H_2 + O_2$$

$$K_{eq} = \frac{pH_2^2 f O_2}{pH_2 O^2}$$

$$K_{eq} = \frac{pH_2^2 fO_2}{pH_2 O^2}$$

$$\frac{pH_2}{pH_2 O} = \sqrt{\frac{K_{eq}}{fO_2}}$$

$$\left(\frac{pH_2}{pH_2O}\right)_{Earth} \approx 0.02$$
 At P = 5 atm and 1300C

At
$$P = 5$$
 atm and 1300C

Grott et al. (2011) argue that early Mars's mantle fugacity state could gave been as low as IW-1 (or FMQ -5)

$$fO_2^{Earth} \cong 10^{-8} atm(FMQ)$$
$$fO_2 \cong 10^{-12} atm(IW)$$

Outgas more H₂ on Mars because of reduced mantle

Are high H₂ amounts possible?

$$\Phi_l(H_2) = \frac{b_i}{H_a} \cdot \frac{f_T(H_2)}{1 + f_T(H_2)} \cong \frac{b_i f_T(H_2)}{H_a}$$

- For IW+1, H_2 outgassing rates ~ 20x greater than that of Earth or $4x10^{11}$ molec./cm⁻²s⁻¹
- For a homopause temperature of 160K, bi/Ha~1.6x10¹³ cm⁻²s⁻¹
- So, $f_t(H_2) \sim 2.5\%$. Within a factor of 2 of 5%
- SNC meteorites (i.e. ALH84001) suggest IW-1 : f_t(H2) >5% may be possible

-Works better for Mars than Earth because scale height (H_a) for Mars is bigger

Are high H₂ amounts possible?

In comparison with 1-D results (i.e. Tian et al., 2009), hydrodynamic escape would have been slowed down by two things:

- 1) Magnetic fields
- 2) Spherical geometry*

* Stone and Praga (2009) show that spherical geometry would have reduced escape rates by a factor of 4, making $20\% H_2$ achievable

Degassing of C

- Grott et al. (2011) state that C would have remained in graphite form and not outgas as CO₂ in a very reduced early Mars atmosphere
- However, C could have outgassed as Fe-carbonyl $(Fe(CO)_5)$ + minor CH_4 and then get oxidized to CO_2

Degassing of reduced carbon from planetary basalts

Diane T. Wetzel^{a,1}, Malcolm J. Rutherford^a, Steven D. Jacobsen^b, Erik H. Hauri^c, and Alberto E. Saal^a

Wetzel et al., (2013), *PNAS*

Conclusions

- The abundance of fluvial features suggests that early Mars (3.8 Ga) was once a warm, wet place
- In contrast to Segura et al. (2008), Hoke et al. (2011) show that voluminous amounts of water over long time scales are required to form the ancient valley networks
- Early Mars could have been warmed with a combination of CO₂, H₂O, and H₂
- Future work requires a 2-D hydrodynamic model that includes spherical geometry
- Treatment of magnetic fields would require a 3-D model
- Come see me at my poster tomorrow to learn about this work's implications for the habitable zone

Why is H₂ so effective?

- Consider the quantum mechanical linear rigid rotor:
- Rotational energy is represented by:

$$E_l = Bl(l+1)$$

The change in energy between levels is:

$$|\Delta E = 2B(l+1)|$$

$$B = \frac{\hbar^2}{2I}$$

$$I = \mu R^2$$

Where:
$$B = \frac{\hbar^2}{2I}$$
 $I = \mu R^2$ $\mu = \frac{m_1 m_2}{m_1 + m_2} = \frac{m}{2}$

Why is H₂ so effective?

- For N_2 : B~ 2cm⁻¹ and both R and m are greater
- For H_2 : $B \sim 60 \text{cm}^{-1}$ and both R and m are smaller
- Thus, ΔE is big for H_2 and energy levels are widely-spaced
- For ΔE is 1000cm⁻¹, 1 = 6 for H_2 and ~ 250 for N_2 !

