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(Hadley 1735)
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Post Newton: Hadley’s (1735) view of the winds

Surface easterlies in the tropics 
must be compensated by 
westerlies elsewhere; otherwise 
Earth’s rotation rate would 
change.
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20th century: Hadley circulation only in tropics
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20th century: Hadley circulation only in tropics

Extratropical macroturbulence transports angular 
momentum out of tropics into extratropics
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Macroturbulence in control

Any theory of atmospheric circulations and of climate must 
be based on a theory of atmospheric macroturbulence.

Because we have no complete theory of macroturbulence, 
“the causes of the General Winds still have not been fully 
explained by any of those who have written on that 
Subject” (Hadley). 

The Hadley circulation was generally thought not to 
depend strongly on atmospheric macroturbulence. But 
that is not the case.



• Conserves angular momentum m in upper branch

Since                  , this implies

with local Rossby number 

• Is energetically closed (no heat export)

• Responds directly to variations in thermal driving

• Result:

The ideal Hadley circulation...

v̄∂ym̄⇡ 0
∂ym̄ µ f + z̄

(Schneider 1977; Schneider & Lindzen 1976, 1977; Held & Hou 1980)
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• Is intuitively appealing (direct reponse to thermal 
driving)

• Appears to account for extent of circulation in 
Earth’s atmosphere

But does it account for variations in Hadley circulation as 
climate varies?

Ideal Hadley circulation theory...



January streamfunction and angular momentum

(Schneider 2006)

Ro . 0.2 Ro . 0.5



• In the annual mean or during equinox are close to 
limit  

• Do not respond directly to variations in thermal 
driving but respond via changes in eddy fluxes

 We need to rethink Hadley circulation response, for 
example, to ENSO and global warming

Earth-like Hadley circulations...

Ro! 0
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theory no longer follows power laws. By numerical cal-
culations analogous to those of HH, with the radiative–
convective equilibrium state of our simulations but us-
ing a constant thermal relaxation time, we found that
Hadley circulations in the nearly inviscid limit extend to
latitudes greater than 75° for rotation rates less than
about !e/8 and essentially extend to the poles for rota-
tion rates less than about !e/32. Their strength in-
creases more slowly than !"1/3 for rotation rates less
than about !e/8. (These scaling results for the nearly
inviscid axisymmetric limit are unchanged if the radia-
tive–convective equilibrium state of the HH model is
used.) Thus, the nearly inviscid axisymmetric theory is
still not quantitatively consistent with the results in
Figs. 10 and 11, probably because eddy momentum
fluxes in the simulated circulations lead to deviations
from angular momentum conservation in the ascending
and descending branches, which are broad, rather than
being confined to narrow latitude belts as assumed in
HH’s nearly inviscid axisymmetric theory (cf. Fig. 9).
The spatial variations of the thermal relaxation time in
our simulations may also contribute to the quantitative
differences to HH’s nearly inviscid axisymmetric
theory.

The simulations with low rotation rates (! ! !e/4)
exhibit equatorial superrotation, that is, local angular
momentum maxima in the equatorial troposphere—
similar to what is seen, for example, in Venus’ atmo-
sphere. The local angular momentum maximum can be
seen, for example, in the angular momentum contours
for the simulation with ! # !e/32 in Fig. 9. Equatorial
superrotation is also evidence for the significance of
eddy momentum fluxes in the circulations. The local
angular momentum maximum in the interior atmo-
sphere is maintained by eddy momentum fluxes into
the maximum; it could not be generated by axisymmet-

ric circulations (cf. Hide 1969; Schneider 1977; Held
and Hou 1980).

d. Tropical versus extratropical temperature
gradients

To elucidate the relative roles tropical and extratro-
pical temperature gradients play in the dynamics of the
Hadley circulation, we conducted series of simulations
relaxed toward two additional radiative-equilibrium
states, one with flat tropical temperatures and one with
flat extratropical temperatures. In these series of simu-
lations, we set $ # 0.7, used the spatially varying ther-
mal relaxation time, and varied the temperature con-
trast %h in the same way as for the series of simulations
with the normative radiative-equilibrium states. As de-
scribed in section 3, in the radiative-equilibrium states
with flat tropical (or extratropical) temperatures, tem-
peratures are constant equatorward (or poleward) of
&32°, where 32° is the latitude up to which the Hadley
circulation extends in the simulation with the normative
radiative-equilibrium state with %h # 120 K. Figures 12
and 13 show Hadley circulation strength and extent for

FIG. 10. Hadley circulation strength 'max as a function of rota-
tion rate (relative to Earth’s). In all cases, %h # 120 K, $ # 0.7,
and the thermal relaxation time varies spatially. The lines show
power laws with exponents "1/3 and "2/3.

FIG. 9. Mass flux streamfunction (black contours) and angular momentum (gray contours) for simulations with
rotation rates 4, 1, 1/4, and 1/32 times Earth’s rotation rate !e. Contour intervals are 20 ( 109 kg s"1 and 0.1!a2

for streamfunction and angular momentum. In all cases, %h # 120 K and $ # 0.7.
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Wider circulations with slower rotation rates

(Walker and Schneider 2006)



Hadley circulation width as a function of 
rotation rate 

(Walker and Schneider 2006)

the two modified radiative-equilibrium states and for
the normative state from which the modified states are
derived.

With flat extratropical radiative-equilibrium tem-
peratures, simulations with H!t "!h ! 0.15 ("h ! 45 K)
have relatively weak Hadley circulations (#max " 3.5 $
109 kg s%1), with the strength increasing modestly with
H!t "!h (Fig. 12). The four simulations with the smallest
temperature contrasts ("h & 15, 22.5, 30, and 45 K)
have little eddy activity, as the temperature gradient in
dynamical equilibrium is too small to give rise to a
strong baroclinically unstable jet. However, as H!t "!h in-
creases from 0.15 to 0.21 ("h & 60 K), the subtropical
temperature gradient becomes sufficiently large that
stronger eddies develop, leading to a jump in Hadley
circulation strength (#max ' 15 $ 109 kg s%1).

At higher H!t "!h, the Hadley circulations in the three
series of simulations exhibit similar scaling behavior
and are of similar strength: the normative Hadley cir-
culations are about a factor 1.7 stronger than the circu-
lations with flat tropical radiative-equilibrium tempera-
tures and about a factor 1.3 stronger than the circula-
tions with flat extratropical radiative-equilibrium
temperatures. There are, however, structural differ-
ences between the circulations. In simulations with flat

extratropical radiative-equilibrium temperatures, the
dynamical-equilibrium temperature gradients are con-
fined almost exclusively to the subtropics, so that the
subtropical jet is narrower and typically equatorward of
and stronger than that in the corresponding normative
simulations. Figure 13 shows that the Hadley circula-
tions are also narrower in these simulations, extending
approximately to the equatorward flank of the nar-
rower jet. Conversely, the Hadley circulations in the
simulations with flat tropical radiative-equilibrium tem-
peratures are slightly wider than those in the normative
simulations, and the subtropical jet is typically weaker.
This contrasts with the prediction of HH’s nearly invis-
cid axisymmetric theory, according to which the Hadley
circulation narrows as tropical radiative-equilibrium
temperature gradients are reduced [cf. Eq. (2a)]. The
simulations with flat tropical radiative-equilibrium tem-
peratures generally exhibit smaller local Rossby num-
bers in the upper branches of the Hadley circulations
near the latitudes of the streamfunction extremum (0.1
" Ro " 0.4) than the normative simulations or the
simulations with flat extratropical radiative-equilibrium
temperatures (0.2 " Ro " 0.8).

With flat tropical temperatures, with H!t "!h " 0.53
("h " 135 K), and with constant thermal relaxation
time, nearly inviscid axisymmetric theory would predict
the atmosphere to be in radiative-convective equilib-
rium. The zonal wind in gradient balance with the ra-
diative-convective equilibrium state would not violate
the constraint (Hide’s theorem) that there must not be
an extremum of angular momentum away from the sur-
face (cf. Plumb and Hou 1992). With the spatially vary-
ing thermal relaxation time in our simulations, even
when the radiative-equilibrium temperature gradient is
zero ("h & 0), radiative-convective equilibrium tem-
peratures have a maximum at the equator, with non-
zero second derivatives, so nearly inviscid theory pre-
dicts there to be a Hadley circulation. However, the
Hadley circulation that results in a simulation with
"h & 0 is narrow ((H ' 12°) and weak (#max ' 0.1 $
109 kg s%1)—more than an order of magnitude weaker

FIG. 11. Hadley circulation extent (H as a function of rotation
rate (relative to Earth’s) for the same simulations as in Fig. 10.
The lines show power laws with exponents %1/5 and %1/3.

FIG. 12. Hadley circulation strength #max as a function of H!t "!h
for simulations with normative cos2 ( radiative-equilibrium tem-
peratures (filled circles), with flat tropical radiative-equilibrium
temperatures (open squares), and with flat extratropical radiative-
equilibrium temperatures (open diamonds). In all cases, ) & 0.7.

FIG. 13. Hadley circulation extent (H as a function of H!t "!h.
Symbols have the same meaning as in Fig. 12.
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(Walker & Schneider 2006; Schneider 2006; Korty & Schneider 2008)

Hadley circulation width as a function of other 
parameters

Wider for more stable stratification



Hadley circulation strength in idealized GCM

(Walker & Schneider 2006; Schneider 2006)

Convective lapse rate gGd = g(g/cp)
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• During equinox, summer, and in annual mean 
controlled by eddy fluxes

• Eddy scaling imprinted on scalings

•Weaker in warmer and (much) colder climates

• Changes in width likewise eddy-controlled (but 
slowly rotating wider, and less influenced by eddies)

Need theory that takes eddy effects into account 
(intermediate Rossby number)

Terrestrial Hadley circulations



(Cassini Imaging Team 2000)

Jupiter from Cassini 



(Cassini Imaging Team 2000)

Jupiter from Cassini 
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• Emit more energy than they receive from the sun

• Internal heat flux can generate convection

• Differential solar radiative heating from above

Energy budget of giant planets

Equator  pole pole 



• Have similar radii and rotation rates

• Differ in energy budgets

• Very different flows: 

• Jupiter, Saturn superrotating

• Uranus, Neptune subrotating

Differences in flows likely caused by differences in energy 
budgets and dissipation. How?

Giant planet properties



3D simulation of all giant planets

(Liu & Schneider 2010)
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Why is Uranus subrota/ng? 

 ‐‐‐ Almost no internal heat flux (0.042 W m‐2), 

the atmosphere is stably stra/fied.  

u  T, N 

(Liu & Schneider 2010)



How about Neptune? 

 ‐‐‐ Has significant internal heat flux (0.43 W m‐2), the 

atmosphere is neutrally straDfied below tropopause.  

u  T,N 

(Liu & Schneider 2010)



Zonal wind   Neptune control simula3on 

(a)  (b) 

(a) Neptune’s insola3on and Saturn’s internal heat flux 2.01 W m‐2 

(b) Uniform insola3on and Neptune’s internal heat flux 0.43 W m‐2 

(Liu & Schneider 2010)



•Planetary rotation rate low

•Convective (intrinsic) heating strong

•Baroclinicity low

Width and strength of SR jets can be understood 
from vorticity homogenization arguments

Equatorial superrotation favored when...

(Schneider & Liu 2009, Liu & Schneider 2010, 2011)



Eddy length 〈Le〉 scales with Rhines scale 〈Lβ〉 defined based on the barotropic energy kinetic

energy Lβ =
2πγβEKE1/4

bt

β1/2 . For strong drag, Rossby deformation radius 〈Lx〉 defined based on

stratification remains constant; for weak drag, Rossby deformation radius increases with eddy length
scale (Fig. 6).
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Figure 6: Left: Eddy length 〈Le〉 versus Rhines scale 〈Lβ〉. Right: Eddy length 〈Le〉 versus Rossby
deformation radius 〈Lx〉.

For strong drag, the global barotropic EKE spectrum flattens to n−5/3; for weak drag, the global
barotropic EKE spectrum follow n−3. However, in all the simulations, eddy-mean flow interaction
dominates the nonlinear spectral flux.

n−1.66

Ba
ro

tro
pi

c 
EK

E 
(m

2  s
−2

)

10−4

10−2

100

Wavenumber

Sp
ec

tr
al

 fl
ux

 (1
0−

3  W
 m
−2

)

1 10 100 200

−150

−100

−50

0

50

n−3

10−4

10−2

100

Wavenumber
1 10 100 200

−150

−100

−50

0

50

Figure 7 Left: strong drag simulation with τ0 = 10d; Right: weak drag simulation with τ0 = 100d.
Top: global barotropic EKE spectra; Bottom: non-linear spectral flux: dashed lines show eddy-eddy
interactions and dash-dot lines show eddy-mean flow interaction.

The zonal spectra of barotropic eddy velocity variance decay more slowly with wave number in
the equatorial region comparing with that in the mid-latitude region (Fig. 8), which explains the
flattening of global barotropic EKE spectra in the simulations with strong drag.
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Figure 8: Zonal spectra of barotropic eddy zonal velocity variance. Left: equatorial region; Right:
mid-latitude region.

Conclusions
For a wide range of the imposed Rayleigh drag parameters, the potential energy generation rate

G(P), the energy conversion rates C(P,K) and the energy dissipation rate D(K) remain remarkably
constant, which implies that the efficiencies of Jupiters and Saturn’s atmospheres are not sensitive
to the imposed Rayleigh drag. The eddy lengths vary weakly with latitude in the off-equatorial
region, and scale with Rhines scale and Rossby deformation radius. For Jupiter and Saturn, these
results imply that the stronger jets on Saturn may arise because Saturn’s magnetic field is weaker
than Jupiters.
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Energy budget
We consider two-component energy cycle, with potential energy P and kinetic energy K [1]:

∂P

∂t
= G(P )− C(P,K) ,

∂K

∂t
= C(P,K)−D(K) . (3)

In a statistically steady state, the potential energy generation G(P ) balances the baroclinic energy
conversion C(P,K); both terms remain remarkably constant as the drag time scale is varied (Fig. 3).
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C(P,K) (blue triangles), energy dissipation by Rayleigh dragDR(K) (green crosses), and barotropic

conversion from eddy to mean kinetic energy C(KE,KM ) (magenta hexagon), all as a function of
the drag time scale τ0.

In steady state, the dissipation rate by the Rayleigh drag DR(K) approximately balances the barotropic
energy conversion rate from eddy kinetic energy to mean flow kinetic energy C(KE,KM ). Given
that the mean flow kinetic energy dissipation scales like τd (u

∗)2, and this is nearly constant as the

drag time scale is varied, it follows that u∗ ∝ τ
1/2
0 away from the equator.
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Figure 4: Left panel: Mean zonal velocity (red for prograde winds and blue for retrograde winds) at

0.65 bar (circles) and 2.8 bar (crosses). The solid line shows u∗ ∝ τ
1/2
0 . The dashed line shows u∗ ∝

βL2
e, with Le being the energy containing eddy length scale. Right panel: Jet spacing. Magenta stars

correspond to Jupiter’s observed winds; Green diamonds correspond to Saturn’s observed winds.

Turbulent characteristics
As the bottom drag decreases, the barotropic eddy kinetic energy (EKE) increases. Baroclinic
EKE is much less than barotropic EKE. The energy containing eddy length scale based on the
meridional eddy velocity variance 〈Le〉 also increase as bottom drag decreases (Fig. 5).
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Figure 5: Left: Eddy kinetic energy versus bottom drag time scale τ0. Right: Energy containing
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Jupiter and Saturn have similar radii, rotation rates, and atmospheres. Yet their off-equatorial jets
differ markedly: Jupiter has 15–20 off-equatorial jets, with speeds at the level of the visible clouds
around 20 m s−1; Saturn has only 5–10 wider off-equatorial jets, with speeds around 100 m s−1.
Here it is shown that the differences between the off-equatorial jets can be accounted for by differ-
ences in the magnetohydrodynamic (MHD) drag the jets experience in the planetary interiors. The
relation between jet characteristics and drag strength is examined systematically through simula-
tions with a general circulation model (GCM).

Simulations and angular momentum budget
The GCM domain is a thin spherical shell in the upper atmosphere of a giant planet, with flow
parameters relevant for Jupiter. Rayleigh drag at an artificial lower boundary (with mean pressure
of 3 bar) is used as a simple representation of the MHD drag the flow on giant planets experiences at
depth. The equatorial no-drag region extends to φe = 26◦ latitude in each hemisphere. Outside the
no-drag region, the drag time scale is set to a constant τ0 with respect to latitude. We vary the off-
equatorial drag time scale τ0 from 5 d to 1000 d (where 1 d = 86400 s ≈ 1 Earth day) to investigate
the effect of the bottom drag on the off-equatorial jets.
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Due to Jupiter’s rapid rotation and large size, Rossby number is small. In the statistically steady
state, the angular momentum balance becomes

u
∗ ·∇MΩ ≈ r⊥F

∗
− S . (1)

Therefore, any net eddy angular momentum flux convergence or divergence on an MΩ surface
must be balanced by a zonal drag force on the same MΩ surface. Since the Rayleigh drag in the
simulations is only imposed near the bottom of the domain, we have

〈ρ̄S〉Ω = r⊥〈ρ̄F
∗
〉Ω ∝ −r⊥Hdρ̄du

∗
d/τd, (2)

where the subscript d denotes quantities in the drag layer and Hd is a measure of the thickness of
the drag layer.
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Scaling of Off-equatorial Jets in Jupiter’s and Saturn’s Atmospheres No. 1678900

Eddy length 〈Le〉 scales with Rhines scale 〈Lβ〉 defined based on the barotropic energy kinetic

energy Lβ =
2πγβEKE1/4

bt

β1/2 . For strong drag, Rossby deformation radius 〈Lx〉 defined based on

stratification remains constant; for weak drag, Rossby deformation radius increases with eddy length
scale (Fig. 6).
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Figure 6: Left: Eddy length 〈Le〉 versus Rhines scale 〈Lβ〉. Right: Eddy length 〈Le〉 versus Rossby
deformation radius 〈Lx〉.

For strong drag, the global barotropic EKE spectrum flattens to n−5/3; for weak drag, the global
barotropic EKE spectrum follow n−3. However, in all the simulations, eddy-mean flow interaction
dominates the nonlinear spectral flux.
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Figure 7 Left: strong drag simulation with τ0 = 10d; Right: weak drag simulation with τ0 = 100d.
Top: global barotropic EKE spectra; Bottom: non-linear spectral flux: dashed lines show eddy-eddy
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The zonal spectra of barotropic eddy velocity variance decay more slowly with wave number in
the equatorial region comparing with that in the mid-latitude region (Fig. 8), which explains the
flattening of global barotropic EKE spectra in the simulations with strong drag.
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Figure 8: Zonal spectra of barotropic eddy zonal velocity variance. Left: equatorial region; Right:
mid-latitude region.

Conclusions
For a wide range of the imposed Rayleigh drag parameters, the potential energy generation rate

G(P), the energy conversion rates C(P,K) and the energy dissipation rate D(K) remain remarkably
constant, which implies that the efficiencies of Jupiters and Saturn’s atmospheres are not sensitive
to the imposed Rayleigh drag. The eddy lengths vary weakly with latitude in the off-equatorial
region, and scale with Rhines scale and Rossby deformation radius. For Jupiter and Saturn, these
results imply that the stronger jets on Saturn may arise because Saturn’s magnetic field is weaker
than Jupiters.
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Energy budget
We consider two-component energy cycle, with potential energy P and kinetic energy K [1]:

∂P

∂t
= G(P )− C(P,K) ,

∂K

∂t
= C(P,K)−D(K) . (3)

In a statistically steady state, the potential energy generation G(P ) balances the baroclinic energy
conversion C(P,K); both terms remain remarkably constant as the drag time scale is varied (Fig. 3).
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Figure 3: Rates of potential energy generation G(P ) (red circles), baroclinic energy conversion
C(P,K) (blue triangles), energy dissipation by Rayleigh dragDR(K) (green crosses), and barotropic

conversion from eddy to mean kinetic energy C(KE,KM ) (magenta hexagon), all as a function of
the drag time scale τ0.

In steady state, the dissipation rate by the Rayleigh drag DR(K) approximately balances the barotropic
energy conversion rate from eddy kinetic energy to mean flow kinetic energy C(KE,KM ). Given
that the mean flow kinetic energy dissipation scales like τd (u

∗)2, and this is nearly constant as the

drag time scale is varied, it follows that u∗ ∝ τ
1/2
0 away from the equator.
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Figure 4: Left panel: Mean zonal velocity (red for prograde winds and blue for retrograde winds) at

0.65 bar (circles) and 2.8 bar (crosses). The solid line shows u∗ ∝ τ
1/2
0 . The dashed line shows u∗ ∝

βL2
e, with Le being the energy containing eddy length scale. Right panel: Jet spacing. Magenta stars

correspond to Jupiter’s observed winds; Green diamonds correspond to Saturn’s observed winds.

Turbulent characteristics
As the bottom drag decreases, the barotropic eddy kinetic energy (EKE) increases. Baroclinic
EKE is much less than barotropic EKE. The energy containing eddy length scale based on the
meridional eddy velocity variance 〈Le〉 also increase as bottom drag decreases (Fig. 5).
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Figure 5: Left: Eddy kinetic energy versus bottom drag time scale τ0. Right: Energy containing
length scale 〈Le〉 versus bottom drag time scale τ0.

Jupiter and Saturn have similar radii, rotation rates, and atmospheres. Yet their off-equatorial jets
differ markedly: Jupiter has 15–20 off-equatorial jets, with speeds at the level of the visible clouds
around 20 m s−1; Saturn has only 5–10 wider off-equatorial jets, with speeds around 100 m s−1.
Here it is shown that the differences between the off-equatorial jets can be accounted for by differ-
ences in the magnetohydrodynamic (MHD) drag the jets experience in the planetary interiors. The
relation between jet characteristics and drag strength is examined systematically through simula-
tions with a general circulation model (GCM).

Simulations and angular momentum budget
The GCM domain is a thin spherical shell in the upper atmosphere of a giant planet, with flow
parameters relevant for Jupiter. Rayleigh drag at an artificial lower boundary (with mean pressure
of 3 bar) is used as a simple representation of the MHD drag the flow on giant planets experiences at
depth. The equatorial no-drag region extends to φe = 26◦ latitude in each hemisphere. Outside the
no-drag region, the drag time scale is set to a constant τ0 with respect to latitude. We vary the off-
equatorial drag time scale τ0 from 5 d to 1000 d (where 1 d = 86400 s ≈ 1 Earth day) to investigate
the effect of the bottom drag on the off-equatorial jets.
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Figure 1:Left panels: mean zonal velocity ū; Right panels: temperature (contours with contour
interval 20 K) and buoyancy frequency N (colors). The off-equatorial Rayleigh drag time scales τ0
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Due to Jupiter’s rapid rotation and large size, Rossby number is small. In the statistically steady
state, the angular momentum balance becomes

u
∗ ·∇MΩ ≈ r⊥F

∗
− S . (1)

Therefore, any net eddy angular momentum flux convergence or divergence on an MΩ surface
must be balanced by a zonal drag force on the same MΩ surface. Since the Rayleigh drag in the
simulations is only imposed near the bottom of the domain, we have

〈ρ̄S〉Ω = r⊥〈ρ̄F
∗
〉Ω ∝ −r⊥Hdρ̄du

∗
d/τd, (2)

where the subscript d denotes quantities in the drag layer and Hd is a measure of the thickness of
the drag layer.
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Drag dependence of off-equatorial jets
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Eddy length 〈Le〉 scales with Rhines scale 〈Lβ〉 defined based on the barotropic energy kinetic

energy Lβ =
2πγβEKE1/4

bt

β1/2 . For strong drag, Rossby deformation radius 〈Lx〉 defined based on

stratification remains constant; for weak drag, Rossby deformation radius increases with eddy length
scale (Fig. 6).
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Figure 6: Left: Eddy length 〈Le〉 versus Rhines scale 〈Lβ〉. Right: Eddy length 〈Le〉 versus Rossby
deformation radius 〈Lx〉.

For strong drag, the global barotropic EKE spectrum flattens to n−5/3; for weak drag, the global
barotropic EKE spectrum follow n−3. However, in all the simulations, eddy-mean flow interaction
dominates the nonlinear spectral flux.
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Figure 7 Left: strong drag simulation with τ0 = 10d; Right: weak drag simulation with τ0 = 100d.
Top: global barotropic EKE spectra; Bottom: non-linear spectral flux: dashed lines show eddy-eddy
interactions and dash-dot lines show eddy-mean flow interaction.

The zonal spectra of barotropic eddy velocity variance decay more slowly with wave number in
the equatorial region comparing with that in the mid-latitude region (Fig. 8), which explains the
flattening of global barotropic EKE spectra in the simulations with strong drag.
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Figure 8: Zonal spectra of barotropic eddy zonal velocity variance. Left: equatorial region; Right:
mid-latitude region.

Conclusions
For a wide range of the imposed Rayleigh drag parameters, the potential energy generation rate

G(P), the energy conversion rates C(P,K) and the energy dissipation rate D(K) remain remarkably
constant, which implies that the efficiencies of Jupiters and Saturn’s atmospheres are not sensitive
to the imposed Rayleigh drag. The eddy lengths vary weakly with latitude in the off-equatorial
region, and scale with Rhines scale and Rossby deformation radius. For Jupiter and Saturn, these
results imply that the stronger jets on Saturn may arise because Saturn’s magnetic field is weaker
than Jupiters.
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Energy budget
We consider two-component energy cycle, with potential energy P and kinetic energy K [1]:

∂P

∂t
= G(P )− C(P,K) ,

∂K

∂t
= C(P,K)−D(K) . (3)

In a statistically steady state, the potential energy generation G(P ) balances the baroclinic energy
conversion C(P,K); both terms remain remarkably constant as the drag time scale is varied (Fig. 3).
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Figure 3: Rates of potential energy generation G(P ) (red circles), baroclinic energy conversion
C(P,K) (blue triangles), energy dissipation by Rayleigh dragDR(K) (green crosses), and barotropic

conversion from eddy to mean kinetic energy C(KE,KM ) (magenta hexagon), all as a function of
the drag time scale τ0.

In steady state, the dissipation rate by the Rayleigh drag DR(K) approximately balances the barotropic
energy conversion rate from eddy kinetic energy to mean flow kinetic energy C(KE,KM ). Given
that the mean flow kinetic energy dissipation scales like τd (u

∗)2, and this is nearly constant as the

drag time scale is varied, it follows that u∗ ∝ τ
1/2
0 away from the equator.

u 
(m

 s
−1

)

τ0(d)
101 102 103

−40

−20

0

20

40

60

80

101 102 103
0

5

10

15

20

25

30

35

40

45

50

τo (d)

Je
t s

pa
ci

ng
 (°

)

Figure 4: Left panel: Mean zonal velocity (red for prograde winds and blue for retrograde winds) at

0.65 bar (circles) and 2.8 bar (crosses). The solid line shows u∗ ∝ τ
1/2
0 . The dashed line shows u∗ ∝

βL2
e, with Le being the energy containing eddy length scale. Right panel: Jet spacing. Magenta stars

correspond to Jupiter’s observed winds; Green diamonds correspond to Saturn’s observed winds.

Turbulent characteristics
As the bottom drag decreases, the barotropic eddy kinetic energy (EKE) increases. Baroclinic
EKE is much less than barotropic EKE. The energy containing eddy length scale based on the
meridional eddy velocity variance 〈Le〉 also increase as bottom drag decreases (Fig. 5).
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Figure 5: Left: Eddy kinetic energy versus bottom drag time scale τ0. Right: Energy containing
length scale 〈Le〉 versus bottom drag time scale τ0.

Jupiter and Saturn have similar radii, rotation rates, and atmospheres. Yet their off-equatorial jets
differ markedly: Jupiter has 15–20 off-equatorial jets, with speeds at the level of the visible clouds
around 20 m s−1; Saturn has only 5–10 wider off-equatorial jets, with speeds around 100 m s−1.
Here it is shown that the differences between the off-equatorial jets can be accounted for by differ-
ences in the magnetohydrodynamic (MHD) drag the jets experience in the planetary interiors. The
relation between jet characteristics and drag strength is examined systematically through simula-
tions with a general circulation model (GCM).

Simulations and angular momentum budget
The GCM domain is a thin spherical shell in the upper atmosphere of a giant planet, with flow
parameters relevant for Jupiter. Rayleigh drag at an artificial lower boundary (with mean pressure
of 3 bar) is used as a simple representation of the MHD drag the flow on giant planets experiences at
depth. The equatorial no-drag region extends to φe = 26◦ latitude in each hemisphere. Outside the
no-drag region, the drag time scale is set to a constant τ0 with respect to latitude. We vary the off-
equatorial drag time scale τ0 from 5 d to 1000 d (where 1 d = 86400 s ≈ 1 Earth day) to investigate
the effect of the bottom drag on the off-equatorial jets.
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Figure 1:Left panels: mean zonal velocity ū; Right panels: temperature (contours with contour
interval 20 K) and buoyancy frequency N (colors). The off-equatorial Rayleigh drag time scales τ0
in the simulations increase from top to bottom: 5 d, 10 d, 20 d, 40 d, 60 d, 100 d, and 1000 d.

Due to Jupiter’s rapid rotation and large size, Rossby number is small. In the statistically steady
state, the angular momentum balance becomes

u
∗ ·∇MΩ ≈ r⊥F

∗
− S . (1)

Therefore, any net eddy angular momentum flux convergence or divergence on an MΩ surface
must be balanced by a zonal drag force on the same MΩ surface. Since the Rayleigh drag in the
simulations is only imposed near the bottom of the domain, we have

〈ρ̄S〉Ω = r⊥〈ρ̄F
∗
〉Ω ∝ −r⊥Hdρ̄du

∗
d/τd, (2)

where the subscript d denotes quantities in the drag layer and Hd is a measure of the thickness of
the drag layer.
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Figure 2: Left panels: mean zonal velocity ū (contours) and divergence of meridional eddy angular
momentum flux (colors). Right panels: mass flux streamfunction (contours) and meridional eddy
momentum flux divergence.
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Eddy length 〈Le〉 scales with Rhines scale 〈Lβ〉 defined based on the barotropic energy kinetic

energy Lβ =
2πγβEKE1/4

bt

β1/2 . For strong drag, Rossby deformation radius 〈Lx〉 defined based on

stratification remains constant; for weak drag, Rossby deformation radius increases with eddy length
scale (Fig. 6).
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Figure 6: Left: Eddy length 〈Le〉 versus Rhines scale 〈Lβ〉. Right: Eddy length 〈Le〉 versus Rossby
deformation radius 〈Lx〉.

For strong drag, the global barotropic EKE spectrum flattens to n−5/3; for weak drag, the global
barotropic EKE spectrum follow n−3. However, in all the simulations, eddy-mean flow interaction
dominates the nonlinear spectral flux.
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Top: global barotropic EKE spectra; Bottom: non-linear spectral flux: dashed lines show eddy-eddy
interactions and dash-dot lines show eddy-mean flow interaction.

The zonal spectra of barotropic eddy velocity variance decay more slowly with wave number in
the equatorial region comparing with that in the mid-latitude region (Fig. 8), which explains the
flattening of global barotropic EKE spectra in the simulations with strong drag.
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Figure 8: Zonal spectra of barotropic eddy zonal velocity variance. Left: equatorial region; Right:
mid-latitude region.

Conclusions
For a wide range of the imposed Rayleigh drag parameters, the potential energy generation rate

G(P), the energy conversion rates C(P,K) and the energy dissipation rate D(K) remain remarkably
constant, which implies that the efficiencies of Jupiters and Saturn’s atmospheres are not sensitive
to the imposed Rayleigh drag. The eddy lengths vary weakly with latitude in the off-equatorial
region, and scale with Rhines scale and Rossby deformation radius. For Jupiter and Saturn, these
results imply that the stronger jets on Saturn may arise because Saturn’s magnetic field is weaker
than Jupiters.
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Energy budget
We consider two-component energy cycle, with potential energy P and kinetic energy K [1]:

∂P

∂t
= G(P )− C(P,K) ,

∂K

∂t
= C(P,K)−D(K) . (3)

In a statistically steady state, the potential energy generation G(P ) balances the baroclinic energy
conversion C(P,K); both terms remain remarkably constant as the drag time scale is varied (Fig. 3).
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C(P,K) (blue triangles), energy dissipation by Rayleigh dragDR(K) (green crosses), and barotropic

conversion from eddy to mean kinetic energy C(KE,KM ) (magenta hexagon), all as a function of
the drag time scale τ0.

In steady state, the dissipation rate by the Rayleigh drag DR(K) approximately balances the barotropic
energy conversion rate from eddy kinetic energy to mean flow kinetic energy C(KE,KM ). Given
that the mean flow kinetic energy dissipation scales like τd (u

∗)2, and this is nearly constant as the

drag time scale is varied, it follows that u∗ ∝ τ
1/2
0 away from the equator.
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Figure 4: Left panel: Mean zonal velocity (red for prograde winds and blue for retrograde winds) at

0.65 bar (circles) and 2.8 bar (crosses). The solid line shows u∗ ∝ τ
1/2
0 . The dashed line shows u∗ ∝

βL2
e, with Le being the energy containing eddy length scale. Right panel: Jet spacing. Magenta stars

correspond to Jupiter’s observed winds; Green diamonds correspond to Saturn’s observed winds.

Turbulent characteristics
As the bottom drag decreases, the barotropic eddy kinetic energy (EKE) increases. Baroclinic
EKE is much less than barotropic EKE. The energy containing eddy length scale based on the
meridional eddy velocity variance 〈Le〉 also increase as bottom drag decreases (Fig. 5).
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Figure 5: Left: Eddy kinetic energy versus bottom drag time scale τ0. Right: Energy containing
length scale 〈Le〉 versus bottom drag time scale τ0.

Jupiter and Saturn have similar radii, rotation rates, and atmospheres. Yet their off-equatorial jets
differ markedly: Jupiter has 15–20 off-equatorial jets, with speeds at the level of the visible clouds
around 20 m s−1; Saturn has only 5–10 wider off-equatorial jets, with speeds around 100 m s−1.
Here it is shown that the differences between the off-equatorial jets can be accounted for by differ-
ences in the magnetohydrodynamic (MHD) drag the jets experience in the planetary interiors. The
relation between jet characteristics and drag strength is examined systematically through simula-
tions with a general circulation model (GCM).

Simulations and angular momentum budget
The GCM domain is a thin spherical shell in the upper atmosphere of a giant planet, with flow
parameters relevant for Jupiter. Rayleigh drag at an artificial lower boundary (with mean pressure
of 3 bar) is used as a simple representation of the MHD drag the flow on giant planets experiences at
depth. The equatorial no-drag region extends to φe = 26◦ latitude in each hemisphere. Outside the
no-drag region, the drag time scale is set to a constant τ0 with respect to latitude. We vary the off-
equatorial drag time scale τ0 from 5 d to 1000 d (where 1 d = 86400 s ≈ 1 Earth day) to investigate
the effect of the bottom drag on the off-equatorial jets.
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Figure 1:Left panels: mean zonal velocity ū; Right panels: temperature (contours with contour
interval 20 K) and buoyancy frequency N (colors). The off-equatorial Rayleigh drag time scales τ0
in the simulations increase from top to bottom: 5 d, 10 d, 20 d, 40 d, 60 d, 100 d, and 1000 d.

Due to Jupiter’s rapid rotation and large size, Rossby number is small. In the statistically steady
state, the angular momentum balance becomes

u
∗ ·∇MΩ ≈ r⊥F

∗
− S . (1)

Therefore, any net eddy angular momentum flux convergence or divergence on an MΩ surface
must be balanced by a zonal drag force on the same MΩ surface. Since the Rayleigh drag in the
simulations is only imposed near the bottom of the domain, we have

〈ρ̄S〉Ω = r⊥〈ρ̄F
∗
〉Ω ∝ −r⊥Hdρ̄du

∗
d/τd, (2)

where the subscript d denotes quantities in the drag layer and Hd is a measure of the thickness of
the drag layer.
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Figure 2: Left panels: mean zonal velocity ū (contours) and divergence of meridional eddy angular
momentum flux (colors). Right panels: mass flux streamfunction (contours) and meridional eddy
momentum flux divergence.
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• Terrestrial tropical circulations are influenced by eddies, but 
mean meridional AM fluxes also play a role, so they are in 
intermediate Rossby number regime (theoretical terra 
incognita)

• Still need general theory for Hadley circulation

• Equatorial superrotation arises when baroclinicity is weak 
enough, heating strong enough, and rotation rate low enough

• Off-equatorial jets can be baroclinically generated (difficult to 
generate them otherwise!)

• Scaling of off-equatorial jets not entirely clear. Rossby radius 
and Rhines scale play a role; inverse cascades not necessarily 

Conclusions


