Spectropolarimetry of exoplanets

Daphne Stam

Aerospace Engineering, Technical University Delft, The Netherlands

Remco de Kok

SRON Netherlands Institute for Space Research

A sharp picture of a gaseous exoplanet around a solar-type star using Gemini North (an 8-m, ground-based telescope with adaptive optics):

(Lafrenière et al., 2008):

A sharp picture of a gaseous exoplanet around a solar-type star using Gemini North (an 8-m, ground-based telescope with adaptive optics):

(Lafrenière et al., 2008):

A sharp picture of a gaseous exoplanet around a solar-type star using Gemini North (an 8-m, ground-based telescope with adaptive optics):

A sharp picture of a gaseous exoplanet around a solar-type star using Gemini North (an 8-m, ground-based telescope with adaptive optics):

The unpolarized stellar background flux

The relative strength of an exoplanet's polarization signal depends strongly on the background flux due to e.g. the parent star:

Close-in planets

Instrument example: PlanetPol (Jim Hough)

Resolved planets

Instrument examples: SPHERE/VLT, GPI/Gemini, EPICS/ELT

The unpolarized stellar background flux

The relative strength of an exoplanet's polarization signal depends strongly on the background flux due to e.g. the parent star:

Close-in planets

Instrument example: PlanetPol (Jim Hough)

Resolved planets

Instrument examples: SPHERE/VLT, GPI/Gemini, EPICS/ELT

In the following, we ignore background starlight, exo-zodiacal light ...

Why is reflected starlight polarized?

Starlight that is reflected by (exo)planets gets polarized upon:

- scattering by gas molecules in the atmosphere
- scattering by atmospheric aerosol and/or cloud particles
- reflection by the surface (if there is any)

Why is reflected starlight polarized?

Starlight that is reflected by (exo)planets gets polarized upon:

- scattering by gas molecules in the atmosphere
- scattering by atmospheric aerosol and/or cloud particles
- reflection by the surface (if there is any)

Polarimetry can be used for:

- detecting exoplanets: finding a polarized signal near an unpolarized star
- confirming detections: background sources are usually unpolarized
- characterizing exoplanetary atmospheres and/or surfaces

Polarimetry for exoplanet characterization

The degree of polarization *P* of light is defined as:

The degree of polarization *P* of reflected starlight depends on*:

- The composition and structure of the planet's atmosphere
- The reflection properties of the planet's surface
- The wavelength λ of the light
- ullet The planetary phase angle α

^{*} P does not depend on: planet's size, distance to the star, distance to the observer!

Reference planes and negative polarization

The reference plane for the polarization is the **planetary scattering plane** (through star, planet, and observer):

If a planet is mirror-symmetric with respect to the reference plane:

- the reflected starlight is linearly polarized, not circularly
- the direction of polarization is perpendicular or parallel to the plane!

A Solar System example: polarization of Venus

The degree of linear polarization P of sunlight reflected by Venus as function of the phase angle α , for two different wavelengths λ :

Hansen & Hovenier [1974] used ground-based polarimetry to derive the size, composition (H₂SO₄), and altitude of Venus' cloud particles

A Solar System example: polarization of Venus

The degree of linear polarization P of sunlight reflected by Venus as function of the phase angle α , for two different wavelengths λ :

At small and large phase angles, P=0 because of symmetry!

8

Phase angle coverage

outer planets: only small phase angles, only small P

exoplanet

The phase angle range at which an exoplanet can be observed depends on the inclination angle *i* of its orbit:

$$90^{\circ} - i \leq \alpha \leq 90^{\circ} + i$$

 $i=0^{\circ}$ for a face-on orbit $i=90^{\circ}$ for an edge-on orbit Information content of polarization

Angular features of the single scattering polarization phase function of particles are preserved upon multiple scattering:

polarized

unpolarized

Comparison: light singly scattered by liquid water cloud droplets and light reflected by a fully cloudy planet with a cloud optical thickness of 100. Spherical liquid water cloud droplets, with r_{eff} =2.0 µm, n_{r} =1.3 and n_{i} =0.00001.

Information content of polarization

Angular features of the single scattering polarization phase function of particles are preserved upon multiple scattering:

polarized

unpolarized

Comparison: light singly scattered by liquid water cloud droplets and light reflected by a fully cloudy planet with a cloud optical thickness of 100. Spherical liquid water cloud droplets, with r_{eff} =2.0 µm, n_{r} =1.3 and n_{i} =0.00001.

Single scattering by cloud particles

The single scattering polarization phase function of particles depends strongly on their microphysical properties (size, shape, composition):

H₂O cloud droplets

Flux and polarization of cloudy exo-Earths

The flux and polarization of starlight reflected by an Earth-like model exoplanet with a **liquid water cloud** below a gas layer as functions of α :

A gas layer, overlaying a cloud with optical thickness 100. Spherical cloud droplets, with r_{eff} =2.0 µm, n_{r} =1.3 and n_{i} =0.00001. The cloud top altitude/optical thickness τ of the gas layer is varied.

Signals of a realistically cloud covered exo-Earth

Using cloud parameter data from an Earth remote-sensing satellite, an Earth-like model planet with a realistic cloud coverage was made:

Earth's clouds on 25 April 2011 from MODIS data (NASA). The planet is covered by ~63% liquid water clouds (grey), and ~36% ice clouds (white). About 28% of the planet is covered by 2 cloud layers.

(Karalidi, Stam & Hovenier, 2012)

Signals of a realistically cloud covered exo-Earth

Using cloud parameter data from an Earth remote-sensing satellite, an Earth-like model planet with a realistic cloud coverage was made:

Earth's clouds on 25 April 2011 from MODIS data (NASA). The planet is covered by ~63% liquid water clouds (grey), and ~36% ice clouds (white). About 28% of the planet is covered by 2 cloud layers.

(Karalidi, Stam & Hovenier, 2012)

A spectropolarimeter for exoplanet research

LOUPE: The Lunar Observatory for Unresolved Polarimetry of Earth

A spectropolarimeter for exoplanet research

LOUPE: The Lunar Observatory for Unresolved Polarimetry of Earth

From the moon, we can monitor the whole Earth:

- during its daily rotation
- at phase angles from 0° to 180°
- throughout the seasons
- outside the Earth's atmosphere

This cannot be done from:

- Low Earth Orbit satellites
- geostationary satellites
- Earth-shine observations
- non-dedicated missions (e.g. Galileo, Venus Express, ...)

Summary

- Polarimetry appears to be a strong tool for the detection and confirmation of exoplanets
- Polarimetry can help to characterize exoplanetary atmospheres and surfaces because it is very sensitive to their composition and structure, while the reflected flux is far less sensitive
- We will get so few photons from exoplanets, we should retrieve all the information they carry with them
- Our own Earth can be used a test-bed for retrieval methods, for example by measuring the flux and polarization of the Earth from the moon with LOUPE