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Directly detecting exoplanets

A sharp picture of a gaseous exoplanet around a solar-type star using
Gemini North (an 8-m, ground-based telescope with adaptive optics):

(Lafreniere et al., 2008):
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~300 AU

Neptune

(Lafreniere et al., 2008):
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The unpolarized stellar background flux

The relative strength of an exoplanet’s polarization signal depends
strongly on the background flux due to e.g. the parent star:

Close-in planets Resolved planets

Instrument example: Instrument examples:
PlanetPol (Jim Hough) SPHERE/VLT, GPI/Gemini, EPICS/ELT
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The unpolarized stellar background flux

The relative strength of an exoplanet’s polarization signal depends
strongly on the background flux due to e.g. the parent star:

Close-in planets Resolved planets

Instrument example: Instrument examples:
PlanetPol (Jim Hough) SPHERE/VLT, GPI/Gemini, EPICS/ELT

In the following, we ignore background starlight, exo-zodiacal light ...
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Why is reflected starlight polarized?

Starlight that is reflected by (exo)planets gets polarized upon:
e scattering by gas molecules in the atmosphere

e scattering by atmospheric aerosol and/or cloud particles

e reflection by the surface (if there is any)




D. M. Stam - 26 June 2013

Why is reflected starlight polarized?

Starlight that is reflected by (exo)planets gets polarized upon:
e scattering by gas molecules in the atmosphere

e scattering by atmospheric aerosol and/or cloud particles

e reflection by the surface (if there is any)

Polarimetry can be used for:

e detecting exoplanets: finding a polarized signal near an unpolarized star
e confirming detections: background sources are usually unpolarized
e characterizing exoplanetary atmospheres and/or surfaces



D. M. Stam - 26 June 2013

Polarimetry for exoplanet characterization

The degree of polarization P of light is defined as: Fpol €

olarized flux
F total F ﬁf

~ total flux

to the observer

» to the observer

The degree of polarization P of reflected starlight depends on*:

e The composition and structure of the planet’s atmosphere
e The reflection properties of the planet’s surface
e The wavelength A\ of the light

e The planetary phase angle a

* P does not depend on: planet’s size, distance to the star, distance to the observer!
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Reference planes and negative polarization

The reference plane for the polarization is the planetary scattering plane
(through star, planet, and observer):

to the observer

| side view

If a planet is mirror-symmetric with respect to the reference plane:
e the reflected starlight is linearly polarized, not circularly
e the direction of polarization is perpendicular or parallel to the plane!

| perpendicular: P> 0
| ‘ ‘
L _ R

= =
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A Solar System example: polarization of Venus

The degree of linear polarization P of sunlight reflected by Venus as
function of the phase angle «, for two different wavelengths A:
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Fic. 4. Observations of the polarization of sunlight reflected by Venus in the visgal wave-
length region and theoretical computations for A« 058 gm, The O's are wide-tand visual
observations by Lyot (1929) while the other observations are for an intermediste bandwidih
Elter centered at )« 088 um; the X's were obtained by Coffeen and Gebrels (1969)) the +'s
by Coffcen (of. Dollfus and Coffeen, 1970), and the A's (which refer 1o the contral part of the
crescent) by Veverka (1971), The theoretical curves are all for a relractive index 1.44, the size
distribation (8) with § =007 and a Rayleigh contribution {5 = 0.045. The different curves show
the infleence of the effective radius on the palarization,

Fie. 7. Olservations and theoretical computations of the polarization of sunlight reflocted
by Venus at d =099 pm. The obscrvations were made with an intermafate bandwidth filter,
the X's being obtained by Coffeen and Gehrels (1969) in 1959-67 and by Coffeen (<f, Dollfus
and Coffeen, 1970) froem 1967 to March 1969, and the O's being obtained by Coffeess (cf.
Dallfes and Coffeen, 1970} in May-July, 1969, The theoretical curves are for spherical particles
baving the size distribution (8) with b= 0,07, The different theoretical curves are for various
refeactive indices, the effective particle radius being selected in each case to yield closest
agreenvent with the obscrvations for all wavelengths.

ansen & Hovenier [1974] used ground-based polarimetry to derive
the size, composition (H2S04), and altitude of Venus’ cloud particles
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A Solar System example: polarization of Venus

The degree of linear polarization P of sunlight reflected by Venus as
function of the phase angle «, for two different wavelengths A:
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Fic. 4. Observations of the polarization of sunlight reflected by Venus in the visgal wave-
length region and theoretical computations for A« 058 gm, The O's are wide-tand visual
observations by Lyot (1929) while the other observations are for an intermediste bandwidih
Elter centered at )« 088 um; the X's were obtained by Coffeen and Gebrels (1999), the +'s
by Coffeen (. Dollfus and Coffeen, 1970), and the A's (which refer 1o the contral part of the
crescent) by Veverka (1971), The theoretical curves are all for a relractive index 1.44, the size
distribation (8) with § =007 and a Rayleigh contribution {5 = 0.045. The different curves show
the infleence of the effective radius on the palarization,
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Fie. 7. Observations and theoretical computations of the polarization of sunlight reflected
by Venus at d =099 pm. The obscrvations were made with an intermafate bandwidth filter,
the X's being obtained by Coffeen and Gehrels (1969) in 1959-67 and by Coffeen (<f, Dollfus
and Coffeen, 1970) froem 1967 to March 1969, and the O's being obtained by Coffeess (cf.
Dallfes and Coffeen, 1970} in May-July, 1969, The theoretical curves are for spherical particles
baving the size distribution (8) with b= 0,07, The different theoretical curves are for various
refeactive indices, the effective particle radius being selected in each case to yield closest
agreenvent with the obscrvations for all wavelengths.
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Information content of polarization
| polarized

Angular features of the single scattering , et
polarization phase function of particles .~ - unpolarized
are preserved upon multiple scattering:
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Comparison: light singly scattered by liquid water cloud droplets and
light reflected by a fully cloudy planet with a cloud optical thickness of 100.
Spherical liquid water cloud droplets, with resf=2.0 um, nr=1.3 and ni=0.00001.
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Spherical liquid water cloud droplets, with resf=2.0 um, nr=1.3 and ni=0.00001.
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Single scattering by cloud particles

The single scattering polarization phase function of particles depends
strongly on their microphysical properties (size, shape, composition):

H2SO4 cloud droplets H>0O cloud droplets
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Flux and polarization of cloudy exo-Earths

The flux and polarization of starlight reflected by an Earth-like model
exoplanet with a liquid water cloud below a gas layer as functions of «:
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Signals of a realistically cloud covered exo-Earth

Using cloud parameter data from an Earth remote-sensing satellite,
an Earth-like model planet with a realistic cloud coverage was made:

Earth’s clouds on 25 April 2011 from MODIS data
(NASA). The planet is covered by ~63% liquid water
clouds (grey), and ~36% ice clouds (white). About
28% of the planet is covered by 2 cloud layers.

(Karalidi, Stam & Hovenier, 2012)
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Using cloud parameter data from an Earth remote-sensing satellite,
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Earth’s clouds on 25 April 2011 from MODIS data
(NASA). The planet is covered by ~63% liquid water
clouds (grey), and ~36% ice clouds (white). About
28% of the planet is covered by 2 cloud layers.
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A spectropolarimeter for exoplanet research

LOUPE: The Lunar Observatory for Unresolved Polarimetry of Earth
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A spectropolarimeter for exoplanet research

LOUPE: The Lunar Observatory for Unresolved Polarimetry of Earth

From the moon, we can monitor the whole Earth:
e during its daily rotation
e at phase angles from 0° to 180°
e throughout the seasons
e outside the Earth’s atmosphere




Summary

e Polarimetry appears to be a strong tool for the detection and confirmation
of exoplanets

e Polarimetry can help to characterize exoplanetary atmospheres and
surfaces because it is very sensitive to their composition and structure,
while the reflected flux is far less sensitive

e \We will get so few photons from exoplanets, we should retrieve all the
information they carry with them

e Our own Earth can be used a test-bed for retrieval methods, for example

by measuring the flux and polarization of the Earth from the moon with
LOUPE
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