Gullies on Vesta Suggest Past Water-Mobilized Flows

Protoplanet Vesta, visited by NASA’s Dawn spacecraft from 2011 to 2013, was once thought to be completely dry, incapable of retaining water because of the low temperatures and pressures at its surface. However, a new study shows evidence that Vesta may have had short-lived flows of water-mobilized material on its surface, based on data from Dawn.

“Nobody expected to find evidence of water on Vesta. The surface is very cold and there is no atmosphere, so any water on the surface evaporates,” said Jennifer Scully, postgraduate researcher at the University of California, Los Angeles. “However, Vesta is proving to be a very interesting and complex planetary body.”

The study has broad implications for planetary science.

“These results, and many others from the Dawn mission, show that Vesta is home to many processes that were previously thought to be exclusive to planets,” said UCLA’s Christopher Russell, principal investigator for the Dawn mission. “We look forward to uncovering even more insights and mysteries when Dawn studies Ceres.”

Dawn is currently in the spotlight because it is approaching dwarf planet Ceres, the largest object in the main asteroid belt between Mars and Jupiter. It will be captured into orbit around Ceres on March 6. Yet data from Dawn’s exploration of Vesta continue to capture the interest of the scientific community.

Scully and colleagues, publishing in the journal “Earth and Planetary Science Letters,” identified a small number of young craters on Vesta with curved gullies and fan-shaped (“lobate”) deposits.

“We’re not suggesting that there was a river-like flow of water. We’re suggesting a process similar to debris flows, where a small amount of water mobilizes the sandy and rocky particles into a flow,” Scully said.

The curved gullies are significantly different from those formed by the flow of purely dry material, scientists said. “These features on Vesta share many characteristics with those formed by debris flows on Earth and Mars,” Scully said.

This image shows Cornelia Crater on the large asteroid Vesta. On the right is an inset image showing an example of curved gullies, indicated by the short white arrows, and a fan-shaped deposit, indicated by long white arrows. Image Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA.

This image shows Cornelia Crater on the large asteroid Vesta. On the right is an inset image showing an example of curved gullies, indicated by the short white arrows, and a fan-shaped deposit, indicated by long white arrows. Image Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA.

More information

Be Sociable, Share!