New Methods to Synthesize Rare Meteoritic Mineral Tetrataenite May Solve the Rare Earth Element Crisis

Credit: Ivanov et al., 2022.

Meteorites and asteroids fascinate planetary scientists because they represent the building blocks of the planets and offer unique insights into the earliest moments of our solar system. Meteorites can be identified as such due to unique chemical signatures, and some types (iron meteorites) show beautiful textures called Widmanstätten patterns, which could only form over millions of years. Moreover, these extraterrestrial materials are important for their potential as in-situ resources for space exploration and industrialization, with the most attention given to water (important for habitability, human exploration, and rocket fuel) and rare earth elements (important for magnets used in electronics) that concentrate in sulfide minerals. A recent intersection of science and engineering has come to the forefront through new methods to synthesize tetrataenite, an iron-nickel alloy found in small quantities in iron meteorites, with a uniquely ordered structure giving it magnetic properties on par with rare earth element magnets.

A new study by Yurii Ivanov and colleagues from the University of Cambridge and a U.S. patent approved for Laura Lewis and colleagues from Northeastern University describe new methods for accelerated production of tetrataenite. The method of Ivanov and colleagues depends on the presence of phosphorus, allowing the tetrataenite structure to form in seconds rather than millions of years. Lewis uses a process in a furnace that induces melting, cooling, and magnetism. In both cases, the discovery of synthetic and potentially mass-producible tetrataenite is exciting because it can be used to make permanent magnets for all but the most demanding pieces of electronics (reducing dependence on China’s multi-billion rare earth element monopoly) and may even cause planetary scientists to rethink how slowly iron meteorites cooled. READ MORE: Direct Formation of Hard-Magnetic Tetrataenite in Bulk Alloy Castings and Researchers May Have Just Solved the Rare Earths Crisis.